8
14

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

MarkDownで数式を書きたい

Last updated at Posted at 2020-11-14

#四則演算

```math
1 + 2 = 3 \
2 - 3 = -1 \
3 \times 2 = 6 \
6 \div 3 = 2
```

1 + 2 = 3 \
2 - 3 = -1 \
3 \times 2 = 6 \
6 \div 3 = 2 \

##分数

```math
\frac{1}{2} - \frac{1}{3} = \frac{1}{6} \
\frac{a+b}{2ab}
```

\frac{1}{2} - \frac{1}{3} = \frac{1}{6} \\
\frac{a+b}{2ab}

##上付き・下付き文字

###上付き文字
 2015-06-13 23.45.52.png

```math
x^a \
x^{1+b} \
x^{a^b} \
ax^2 + bx + c = 0 \
y = x^{\frac{1}{2}}
```

x^a \\
x^{1+b} \\
x^{a^b} \\
ax^2 + bx + c = 0 \\
y = x^{\frac{1}{2}}

###下付き文字
 2015-06-13 23.46.03.png

```math
a_i \
a_{ij} \
a_{i_j} \
x_{n+1} = rx_n(1-x_n)
```

a_i \\
a_{ij} \\
a_{i_j} \\
x_{n+1} = rx_n(1-x_n)

##イコール(=)を揃える
begin{align}とend{align}と&を用いることによってブロック内で改行前後の位置を揃える

```math
\begin{align}
f(x) &= x^2+3x+2 \
&= (x+1)(x+2)
\end{align}
```

\begin{align}
f(x) &= x^2+3x+2 \\
&= (x+1)(x+2)
\end{align}

##文字の間隔
###一般的なスペース
 2015-06-14 0.36.38.png

```math
y \quad = ax \qquad + b
```

y \quad = ax \qquad + b

##調整可能なスペース
 2015-06-14 0.36.31.png

```math
a \hspace{50pt} b \hspace{1cm} c
```

a \hspace{50pt} b \hspace{1cm} c

###小さなスペース
 2015-06-14 0.35.55.png

```math
a \! b \, c \: d \; e \
a \!\! b \,\, c \:\: d \;\; e
```

a \! b \, c \: d \; e \\
a \!\! b \,\, c \:\: d \;\; e

##括弧の大きさ
下に行くほど括弧が大きくなる
###左括弧

\bigl
\Bigl
\biggl
\Biggl

###右括弧
\bigr
\Bigr
\biggr
\Biggr

丸括弧()・角括弧[]・波括弧{}を使いたいときは、それぞれの括弧の後ろにつける

```math
a \Biggl(
b \biggl(
c \Bigl(
d \bigl(
e ( f + g )
\bigr)
\Bigr)
\biggr)
\Biggr) \
a \Biggl[
b \biggl[
c \Bigl[
d \bigl[
e [ f + g ]
\bigr]
\Bigr]
\biggr]
\Biggr]
```

a \Biggl(
b \biggl(
c \Bigl(
d \bigl(
e ( f + g )
\bigr)
\Bigr)
\biggr)
\Biggr) \\
a \Biggl[
b \biggl[
c \Bigl[
d \bigl[
e [ f + g ]
\bigr]
\Bigr]
\biggr]
\Biggr]
\Biggl]

##極限(lim)
 2015-06-14 0.27.25.png

```math
\lim_{x \to \infty} f(x) \
\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \
\lim_{\substack{x \to \infty \ y \to \infty}} f(x,y)
```

\lim_{x \to \infty} f(x) \\
\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \\
\lim_{\substack{x \to \infty \\ y \to \infty}} f(x,y)

##平方根(sqrt)
 2015-06-13 23.39.26.png

```math
\sqrt{a^2+b^2} \
\sqrt[3]{a}
```

\sqrt{a^2+b^2} \\
\sqrt[3]{a}

##三角関数(sin, cos, tan)
 2015-06-14 0.06.03.png

```math
\sin^2 x + \cos^2 x = 1
```

\sin^2 x + \cos^2 x = 1

##指数関数(e, exp)
 2015-06-14 0.04.49.png

```math
e^{i\pi} = -1 \
e^{i\theta} = \cos \theta + i \sin \theta
```

e^{i\pi} = -1 \\
e^{i\theta} = \cos \theta + i \sin \theta

##対数関数・自然対数(log, ln)
 2015-06-14 0.00.39.png

```math
\log_a \frac{x}{y} = \log_a x - \log_a y \
\ln \frac{x}{y}
```

\log_a \frac{x}{y} = \log_a x - \log_a y \\
\ln \frac{x}{y}

##積分・重積分・周回積分(∫)
###積分
 2015-06-13 23.52.30.png

```math
\int f(x)dx \
\int_{a}^{b}f(x)dx
```

\int f(x)dx \\\
\int_{a}^{b}f(x)dx

###重積分
 2015-06-13 23.54.27.png

```math
\iint f(x,y)dxdy
```

\iint f(x,y)dxdy

###周回積分
 2015-06-13 23.57.16.png

```math
\oint_C \frac{1}{z}dz
```

\oint_C \frac{1}{z}dz

##和・総和(シグマΣ)
fix_sum.png

```math
\sum_{k=1}^{n} k = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} \
\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}
```

\sum_{k=1}^{n} k = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} \\
\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}

##ギリシャ文字
 2015-06-14 0.42.37.png

```math
i \hbar \frac{\partial \psi}{\partial t} = H \psi(x,t)
```

i \hbar \frac{\partial \psi}{\partial t} = H \psi(x,t)

##等号、不等号、演算子、集合
figgg.png

##矢印記号
figfig.png

```math
\begin{align}
\qquad &ax^2+bx+c = 0 \
\Leftrightarrow &\quad x^2 + \frac{b}{a}x = - \frac{c}{a} \
\Leftrightarrow &\quad x^2 + \frac{b}{2a} x + \frac{b^2}{4a^2} = \frac{b^2}{4a^2} - \frac{c}{a} \
\Leftrightarrow &\quad (x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2} \
\Leftrightarrow &\quad x + \frac{b}{2a} = \pm \frac{\sqrt{b^2-4ac}}{2a} \
\therefore &x = \frac{-b \pm \sqrt{b^2-4ac} }{2a}
\end{align}
```

\begin{align}
\qquad &ax^2+bx+c = 0 \\
\Leftrightarrow &\quad x^2 + \frac{b}{a}x = - \frac{c}{a} \\
\Leftrightarrow &\quad x^2 + \frac{b}{2a} x + \frac{b^2}{4a^2} = \frac{b^2}{4a^2} - \frac{c}{a} \\
\Leftrightarrow &\quad (x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2} \\
\Leftrightarrow &\quad x + \frac{b}{2a} = \pm \frac{\sqrt{b^2-4ac}}{2a} \\
\therefore &x = \frac{-b \pm \sqrt{b^2-4ac} }{2a}
\end{align}

##アクセント記号(ベクトルなど)

 2015-06-14 20.51.24.png

```math
\vec{A} = \vec{B} + \vec{C} \
F = m\ddot{x}
```

\vec{A} = \vec{B} + \vec{C} \\
F = m\ddot{x}

##ドット(3点リーダー)

```math
\left(
\begin{array}{ccccc}
a_{11} & \cdots & a_{1i} & \cdots & a_{1n}\
\vdots & \ddots & & & \vdots \
a_{i1} & & a_{ii} & & a_{in} \
\vdots & & & \ddots & \vdots \
a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
\end{array}
\right)fix_sum.png

```


\left(
\begin{array}{ccccc}
a_{11} & \cdots & a_{1i} & \cdots & a_{1n}\\
\vdots & \ddots &        &        & \vdots \\
a_{i1} &        & a_{ii} &        & a_{in} \\
\vdots &        &        & \ddots & \vdots \\
a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
\end{array}
\right)

##行列と行列式

```math
\begin{matrix}
a & b \
c & d
\end{matrix}
```

\begin{matrix}
a & b \\
c & d 
\end{matrix}

```math
\begin{pmatrix}
a & b \
c & d
\end{pmatrix}
```

\begin{pmatrix}
a & b \\
c & d 
\end{pmatrix}

```math
\begin{bmatrix}
a & b \
c & d
\end{bmatrix}
```

\begin{bmatrix}
a & b \\
c & d 
\end{bmatrix}

```math
\begin{vmatrix}
a & b \
c & d
\end{vmatrix}
```

\begin{vmatrix}
a & b \\
c & d 
\end{vmatrix}

```math
\begin{Vmatrix}
a & b \
c & d
\end{Vmatrix}
```

\begin{Vmatrix}
a & b \\
c & d 
\end{Vmatrix}

```math
\begin{pmatrix}
a & b \
c & d
\end{pmatrix}
\times
\begin{vmatrix}
e & f \
g & h
\end{vmatrix}
```

\begin{pmatrix}
a & b \\
c & d 
\end{pmatrix}

\times

\begin{vmatrix}
e & f \\
g & h 
\end{vmatrix}

##場合分け

```math
f(x) = \left\{
\begin{array}{ll}
1 & (x \geq 0) \
0 & (x \lt 0)
\end{array}
\right.
```

f(x) = \left\{
\begin{array}{ll}
1 & (x \geq 0)\\
0 & (x \lt 0)
\end{array}
\right.
8
14
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
8
14

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?