0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

PySparkを試す 2日目

Posted at

PySparkを試す の続き

ソースはGist

やったこと

CSVの読み込み

RDDやPandasのDataFrameから変換できるけど2.0からはcsv()で読み込める。

spark = SparkSession.builder.getOrCreate()
# https://gihyo.jp/book/2015/978-4-7741-7631-4/support
df  = spark.read.csv("click_data_sample.csv", header=True)

列名に . が入るとうまく処理できず、回避方法がわからなかったので列名を置換した。もっといい方法があるはず。

# to_timestampの第一引数の指定方法がわからなかったので列名をリネーム
old_cols = df.columns
new_cols = [c.replace('.', '_') for c in df.columns]
for old,new in zip(old_cols, new_cols):
    df = df.withColumnRenamed(old, new)
df.show(5)
+-------------------+-------+-----------+
|           click_at|user_id|campaign_id|
+-------------------+-------+-----------+
|2015-04-27 20:40:40| 144012|Campaign077|
|2015-04-27 00:27:55|  24485|Campaign063|
|2015-04-27 00:28:13|  24485|Campaign063|
|2015-04-27 00:33:42|  24485|Campaign038|
|2015-04-27 01:00:04|  24485|Campaign063|
+-------------------+-------+-----------+
only showing top 5 rows

型の確認

dtypesprintSchema()で見れた。

df.dtypes
[('click_at', 'string'), ('user_id', 'string'), ('campaign_id', 'string')]

df.printSchema()
root
 |-- click_at: string (nullable = true)
 |-- user_id: string (nullable = true)
 |-- campaign_id: string (nullable = true)

Datetime型に変換

to_timestamp() を使った。

from pyspark.sql.functions import to_timestamp

df = df.withColumn("parsed", to_timestamp('click_at', 'yyyy-MM-dd HH:mm:ss'))
df.show(5)
+-------------------+-------+-----------+-------------------+
|           click_at|user_id|campaign_id|             parsed|
+-------------------+-------+-----------+-------------------+
|2015-04-27 20:40:40| 144012|Campaign077|2015-04-27 20:40:40|
|2015-04-27 00:27:55|  24485|Campaign063|2015-04-27 00:27:55|
|2015-04-27 00:28:13|  24485|Campaign063|2015-04-27 00:28:13|
|2015-04-27 00:33:42|  24485|Campaign038|2015-04-27 00:33:42|
|2015-04-27 01:00:04|  24485|Campaign063|2015-04-27 01:00:04|
+-------------------+-------+-----------+-------------------+
only showing top 5 rows

時間ごとに集計

date_format() で時間の文字列を作って、それごとにgroupBy()count()した。

from pyspark.sql.functions import date_format

df.select(date_format('parsed', 'yyyy-MM-dd HH').alias('hour'), 'user_id').groupBy('hour').count().sort('hour').show(5)
+-------------+-----+
|         hour|count|
+-------------+-----+
|2015-04-27 00| 2322|
|2015-04-27 01| 1571|
|2015-04-27 02|  943|
|2015-04-27 03|  631|
|2015-04-27 04|  438|
+-------------+-----+
only showing top 5 rows
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?