1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

D-term transfer

Last updated at Posted at 2018-04-30

If an interferometric array contains antennas with known D-term (D-ref antennas), it is possible to determine D-term of other antennas through observations toward a polarization calibrator. The Stokes parameters of the calibrator can be assumed to be known because they can be measured using a sub array that consists of D-ref antennas.

Formalism

Let the Stokes parameters and the correlator outputs (with Gain correction) as :

\boldsymbol{S} = \left(
\begin{array}{c}
I \\
Q \\
U \\
V \\
\end{array}
\right), \ 
\boldsymbol{X} = \left(
\begin{array}{c}
\left< XX^* \right> / ( G^j_X G^{i*}_X ) \\
\left< XY^* \right> / ( G^j_X G^{i*}_Y ) \\
\left< YX^* \right> / ( G^j_Y G^{i*}_X ) \\
\left< YY^* \right> / ( G^j_Y G^{i*}_Y ) \\
\end{array}
\right).

and let the D-term matrix and parallactic-angle matrix as :

D = 
\left(
\begin{array}{cccc}
1              & D^{i*}_X        & D^j_X           & D^j_X D^{i*}_X \\
D^{i*}_Y       & 1               & D^j_X D^{i*}_Y  & D^j_X          \\
D^j_Y          & D^j_Y D^{i*}_X  & 1               & D^{i*}_X       \\
D^j_Y D^{i*}_Y & D^j_Y           & D^{i*}_Y        & 1              \\
\end{array}
\right) \tag{1.1} \\
P = 
\left(
\begin{array}{cccc}
1 &  \cos 2\psi  &  \sin 2\psi & 0 \\
0 & -\sin 2\psi  &  \cos 2\psi & i \\
0 & -\sin 2\psi  &  \cos 2\psi & -i \\
1 & -\cos 2\psi  & -\sin 2\psi & 0 \\
\end{array}
\right)

then we have $\boldsymbol{X} = D P \boldsymbol{S}$. In (1.1), let $D^j$ known. The least-squared fit for unknown $D_i$ will be obtained to minimize the norm of the residual, $\boldsymbol{X} - D_{\rm trial}P\boldsymbol{S}$. The correction vector is given by $P \cdot$ residual where $P$ is the partial derivative matrix given as:

P = \left(
\begin{array}{cccc}
\frac{\partial \left< XX^* \right>_{\rm real}}{\partial D_{\rm x.real}} &
\frac{\partial \left< XX^* \right>_{\rm real}}{\partial D_{\rm x.imag}} &
\frac{\partial \left< XX^* \right>_{\rm real}}{\partial D_{\rm y.real}} &
\frac{\partial \left< XX^* \right>_{\rm real}}{\partial D_{\rm y.imag}} \\
\frac{\partial \left< XX^* \right>_{\rm imag}}{\partial D_{\rm x.real}} &
\frac{\partial \left< XX^* \right>_{\rm imag}}{\partial D_{\rm x.imag}} & \cdots  \\
\frac{\partial \left< XY^* \right>_{\rm real}}{\partial D_{\rm x.real}} & \cdots  \\
\frac{\partial \left< XY^* \right>_{\rm imag}}{\partial D_{\rm x.real}} & \cdots  \\
\frac{\partial \left< YX^* \right>_{\rm real}}{\partial D_{\rm x.real}} & \cdots  \\
\frac{\partial \left< YX^* \right>_{\rm imag}}{\partial D_{\rm x.real}} & \cdots  \\
\frac{\partial \left< YY^* \right>_{\rm real}}{\partial D_{\rm x.real}} & \cdots  \\
\frac{\partial \left< YY^* \right>_{\rm imag}}{\partial D_{\rm x.real}} & \cdots  \\
\end{array} \right),

The matrix $P$ is divided into sub-matrices as

P = \left(
\begin{array}{cc}
A & O \\
O & B \\
\end{array} \right),

where

A = \left(
\begin{array}{cc}
UCmQS + (I - QCpUS) D_{\rm x, real} & (I - QCpUS) D_{\rm x, imag} \\
(QCpUS - I) D_{\rm x, imag} & UCmQS + (I-QCpUS) D_{\rm x, imag} \\
I - QCpUS + UCmQS \ D_{\rm y, real} & UCmQS \ D_{\rm y, imag} \\
-UCmQS \ D_{\rm y, imag} & I - QCpUS + UCmQS \ D_{\rm x, real} \\
\end{array} \right), \ B = \left(
\begin{array}{cc}
I + QCpUS + UCmQS \ D_{\rm x, real} & UCmQS \ D_{\rm x, imag} \\
-UCmQS \ D_{\rm x, imag} & I + QCpUS + UCmQS \ D_{\rm x, real} \\
UCmQS + (I + QCpUS) D_{\rm x, real} & (I + QCpUS) D_{\rm y, imag} \\
-(I + QCpUS) D_{\rm y, imag} & UCmQS + (I + QCpUS) D_{\rm y, real} \\
\end{array} \right).

Then, we have

P^TP = \left(
\begin{array}{cc}
A^TA & O \\
O & B^TB \\
\end{array} \right)

Here is a Python code to calculate $P^TP$ and solution for the correction vector.

def TransferD(Vis, DtX, DtY, PS):
    refAntNum, PAnum = len(DtX), PS.shape[1]
    #
    A0 = np.repeat(PS[2], refAntNum)  +  np.outer(PS[3], DtX.real).reshape(PAnum* refAntNum)
    A1 = np.repeat(PS[3], refAntNum)  +  np.outer(PS[2], DtY.real).reshape(PAnum* refAntNum)
    A2 = -np.outer(PS[3], DtX.imag).reshape(PAnum* refAntNum)
    A3 = -np.outer(PS[2], DtY.imag).reshape(PAnum* refAntNum)
    #
    B0 = np.repeat(PS[0], refAntNum)  +  np.outer(PS[1], DtX.real).reshape(PAnum* refAntNum)
    B1 = np.repeat(PS[1], refAntNum)  +  np.outer(PS[0], DtY.real).reshape(PAnum* refAntNum)
    B2 = -np.outer(PS[1], DtX.imag).reshape(PAnum* refAntNum)
    B3 = -np.outer(PS[0], DtY.imag).reshape(PAnum* refAntNum)
    #
    resid = Vis.transpose(0,2,1).reshape(4, PAnum* refAntNum)
    resid[0] -= (np.repeat(PS[0], refAntNum) + np.outer(PS[1], DtX.conjugate()).reshape(PAnum* refAntNum))
    resid[1] -= (np.repeat(PS[1], refAntNum) + np.outer(PS[0], DtY.conjugate()).reshape(PAnum* refAntNum))
    resid[2] -= (np.repeat(PS[2], refAntNum) + np.outer(PS[3], DtX.conjugate()).reshape(PAnum* refAntNum))
    resid[3] -= (np.repeat(PS[3], refAntNum) + np.outer(PS[2], DtY.conjugate()).reshape(PAnum* refAntNum))
    #
    PTP_diag = np.array([
        A0.dot(A0) + A1.dot(A1) + A2.dot(A2) + A3.dot(A3), 
        A0.dot(A0) + A1.dot(A1) + A2.dot(A2) + A3.dot(A3), 
        B0.dot(B0) + B1.dot(B1) + B2.dot(B2) + B3.dot(B3),
        B0.dot(B0) + B1.dot(B1) + B2.dot(B2) + B3.dot(B3)])
    #
    PTdotR = np.array([
        A0.dot(resid[0].real) + A1.dot(resid[1].real) + A2.dot(resid[0].imag) + A3.dot(resid[1].imag),
       -A2.dot(resid[0].real) - A3.dot(resid[1].real) + A0.dot(resid[0].imag) + A1.dot(resid[1].imag),
        B0.dot(resid[2].real) + B1.dot(resid[3].real) + B2.dot(resid[2].imag) + B3.dot(resid[3].imag),
       -B2.dot(resid[2].real) - B3.dot(resid[3].real) + B0.dot(resid[2].imag) + B1.dot(resid[3].imag)])
    #
    Solution = PTdotR / PTP_diag
    return Solution[0] + 1.0j* Solution[1], Solution[2] + 1.0j* Solution[3]
#
1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?