Real-time adaptive cancellation of TENS feedback artifact on sEMG for prosthesis closed-loop control, November 2024Frontiers in Bioengineering and Biotechnology 12
DOI: 10.3389/fbioe.2024.1492588
Byungwook LeeKyung-Soo KimYounggeol ChoYounggeol Cho
https://www.researchgate.net/publication/386426198_Real-time_adaptive_cancellation_of_TENS_feedback_artifact_on_sEMG_for_prosthesis_closed-loop_control
References
Ara, J., Hwang, S. H., Song, T., and Khang, G. (2014). Effects of the stimulus parameters on the tactile sensations elicited by single-channel transcutaneous electrical stimulation. Int. J. Precis. Eng. Manuf. 15, 305–313. doi:10.1007/s12541-014-0339-4
Biddiss, E., and Chau, T. (2007). Upper-limb prosthetics: critical factors in device abandonment. Am. J. Phys. Med. and rehabilitation 86, 977–987. doi:10.1097/phm. 0b013e3181587f6c
Bueckner, H., and Center, W. U. M. M. R. (1961). On a class of singular integral equations. Trans. Conf. Arsenal Math. 7, 279. doi:10.1515/dema-1995-0407
Buongiorno, D., Barsotti, M., Barone, F., Bevilacqua, V., and Frisoli, A. (2018). A linear approach to optimize an emg-driven neuromusculoskeletal model for movement intention detection in myo-control: a case study on shoulder and elbow joints. Front. Neurorobotics 12, 74. doi:10.3389/fnbot.2018.00074
Cho, Y., and Kim, K. S. (2020). Estimating simultaneous and proportional finger force intention based on semg using a constrained autoencoder. IEEE Access 8, 138264–138276. doi:10.1109/ACCESS.2020.3012741
Cho, Y., and Kim, P. (2022). Real-time finger force estimation robust to a perturbation of electrode placement for prosthetic hand control. IEEE Trans. Neural Syst. Rehabilitation Eng. 30, 1233–1243. doi:10.1109/TNSRE.2022.3171394
Cho, Y., Lee, B., Lee, Y., and Kim, K.-S. (2023). Simultaneous sensory feedback strategy for force and position of gripper based on tens. IEEE Robotics Automation Lett. 8, 5291–5298. doi:10.1109/LRA.2023.3284352
Choi, K., Kim, P., Kim, K.-S., and Kim, S. (2017). Mixed-modality stimulation to evoke two modalities simultaneously in one channel for electrocutaneous sensory feedback. IEEE Trans. Neural Syst. Rehabilitation Eng. 25, 2258–2269. doi:10.1109/TNSRE.2017.2730856
Chowdhury, R. H., Reaz, M. B., Ali, M. A. B. M., Bakar, A. A., Chellappan, K., and Chang, T. G. (2013). Surface electromyography signal processing and classification techniques. Sensors 13, 12431–12466. doi:10.3390/s130912431
Cifrek, M.,Medved, V., Tonković, S., and Ostojić, S. (2009). Surface emg based muscle fatigue evaluation in biomechanics. Clin. Biomech. 24, 327–340. doi:10.1016/j. clinbiomech.2009.01.010
D’Anna, E., Valle, G., Mazzoni, A., Strauss, I., Iberite, F., Patton, J., et al. (2019). A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robotics 4, eaau8892. doi:10.1126/scirobotics.aau8892
De Luca, C. J. (1997). The use of surface electromyography in biomechanics. J. Appl. Biomechanics 13, 135–163. doi:10.1123/jab.13.2.135
Dideriksen, J. L., Mercader, I. U., and Dosen, S. (2020). Closed-loop control using electrotactile feedback encoded in frequency and pulse width. IEEE Trans. Haptics 13, 818–824. doi:10.1109/toh.2020.2985962
Dimitrov, H., Bull, A., and Farina, D. (2020). Real-time interface algorithm for ankle kinematics and stiffness from electromyographic signals. IEEE Trans. Neural Syst. Rehabilitation Eng. 28, 1416–1427. doi:10.1109/TNSRE.2020.2986787
Dosen, S., Schaeffer, M.-C., and Farina, D. (2014). Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback. J. neuroengineering Rehabilitation 11, 138–210. doi:10.1186/1743-0003-11-138
Earley, E. J., Hargrove, L. J., and Kuiken, T. A. (2016). Dual window pattern recognition classifier for improved partial-hand prosthesis control. Front. Neurosci. 10, 58. doi:10.3389/fnins.2016.00058
Earley, E. J., Johnson, R. E., Sensinger, J. W., and Hargrove, L. J. (2021). Joint speed feedback improves myoelectric prosthesis adaptation after perturbed reaches in non amputees. Sci. Rep. 11, 5158. doi:10.1038/s41598-021-84795-5
Earley, E. J., Berneving, A., Zbinden, J., and Ortiz-Catalan, M. (2022). Neurostimulation artifact removal for implantable sensors improves signal clarity and decoding of motor volition. Front. Hum. Neurosci. 106, 1030207. doi:10.3389/fnhum.2022.1030207
Farrell, T. R., and Weir, R. F. (2007). The optimal controller delay for myoelectric prostheses. IEEE Trans. Neural Syst. Rehabilitation Eng. 15, 111–118. doi:10.1109/TNSRE.2007.891391
Fougner, A., Stavdahl, Ø., Kyberd, P. J., Losier, Y. G., and Parker, P. A. (2012). Control of upper limb prostheses: terminology and proportional myoelectric control—a review. IEEE Trans. Neural Syst. Rehabilitation Eng. 20, 663–677. doi:10.1109/TNSRE.2012.2196711
Gui, K., Liu, H., and Zhang, D. (2019). A practical and adaptive method to achieve emg-based torque estimation for a robotic exoskeleton. IEEE/ASME Trans. Mechatronics 24, 483–494. doi:10.1109/TMECH.2019.2893055
Hartmann, C., Došen, S., Amsuess, S., and Farina, D. (2014). Closed-loop control of myoelectric prostheses with electrotactile feedback: influence of stimulation artifact and blanking. IEEE Trans. Neural Syst. Rehabilitation Eng. 23, 807–816. doi:10.1109/TNSRE.2014.2357175
Hogan, N. (1976). A review of the methods of processing emg for use as a proportional control signal. Biomed. Eng. 11, 81–86.
Holmes, N. P., and Spence, C. (2004). The body schema and multisensory representation (s) of peripersonal space. Cogn. Process. 5, 94–105. doi:10.1007/ s10339-004-0013-3
Jiang, L., Huang, Q., Zhao, J., Yang, D., Fan, S., and Liu, H. (2014). “Noise cancellation for electrotactile sensory feedback of myoelectric forearm prostheses,” in 2014 IEEE International Conference on Information and Automation (ICIA) (Ieee), Hailar, China, 28-30 July 2014, 1066–1071. doi:10.1109/icinfa.2014.6932807
Jiang, N., and Farina, D. (2014). Myoelectric control of upper limb prosthesis: current status, challenges and recent advances. Front. Neuroeng 7, 7–9. doi:10.3389/conf.fneng.2014.11.00004
Kang, I., Kunapuli, P., Hsu, H., and Young, A. J. (2019). “Electromyography (emg) signal contributions in speed and slope estimation using robotic exoskeletons,” in 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24-28 June 2019 (IEEE), 548–553.
Lewis, S., Russold, M. F., Dietl, H., and Kaniusas, E. (2012). “User demands for sensory feedback in upper extremity prostheses,” in 2012 IEEE international symposium on medical measurements and applications proceedings (Ieee), Budapest, Hungary, 18-19 May 2012, 1–4.
Li, Y., Wang, P. T., Vaidya, M. P., Flint, R. D., Liu, C. Y., Slutzky, M. W., et al. (2021). Electromyogram (emg) removal by adding sources of emg (erase)—a novel ica-based algorithm for removing myoelectric artifacts from eeg. Front. Neurosci. 14, 597941. doi:10.3389/fnins.2020.597941
Lu, W., Gong, D., Xue, X., and Gao, L. (2024). Improved multi-layer wavelet transform and blind source separation based ecg artifacts removal algorithm from the semg signal: in the case of upper limbs. Front. Bioeng. Biotechnol. 12, 1367929. doi:10.3389/fbioe.2024.1367929
Mastinu, E., Engels, L. F., Clemente, F., Dione, M., Sassu, P., Aszmann, O., et al.
(2020). Neural feedback strategies to improve grasping coordination in
neuromusculoskeletal prostheses. Sci. Rep. 10, 11793. doi:10.1038/s41598-020-
67985-5
Mendrela, A. E., Cho, J., Fredenburg, J. A., Nagaraj, V., Netoff, T. I., Flynn, M. P., et al.
(2016). A bidirectional neural interface circuit with active stimulation artifact
cancellation and cross-channel common-mode noise suppression. IEEE J. Solid-State
Circuits 51, 955–996. doi:10.1109/JSSC.2015.2506651
Moniri, A., Terracina, D., Rodriguez-Manzano, J., Strutton, P. H., and Georgiou, P.
(2020). Real-time forecasting of semg features for trunk muscle fatigue using machine
learning. IEEE Trans. Biomed. Eng. 68, 718–727. doi:10.1109/TBME.2020.3012783
Nielsen, J. L., Holmgaard, S., Jiang, N., Englehart, K. B., Farina, D., and Parker, P. A.
(2010). Simultaneous and proportional force estimation for multifunction myoelectric
prostheses using mirrored bilateral training. IEEE Trans. Biomed. Eng. 58, 681–688.
doi:10.1109/TBME.2010.2068298
Nordin, A. D., Hairston, W. D., and Ferris, D. P. (2018). Dual-electrode motion
artifact cancellation for mobile electroencephalography. J. Neural Eng. 15, 056024.
doi:10.1088/1741-2552/aad7d7
Parajuli, N., Sreenivasan, N., Bifulco, P., Cesarelli, M., Savino, S., Niola, V., et al.
(2019). Real-time emg based pattern recognition control for hand prostheses: a review
on existing methods, challenges and future implementation. Sensors 19, 4596. doi:10.
3390/s19204596
Pilkar, R., Yarossi, M., Ramanujam, A., Rajagopalan, V., Bayram, M. B., Mitchell, M.,
et al. (2016). Application of empirical mode decomposition combined with notch
filtering for interpretation of surface electromyograms during functional electrical
stimulation. IEEE Trans. Neural Syst. Rehabilitation Eng. 25, 1268–1277. doi:10. 1109/TNSRE.2016.2624763
Samuel, O. W., Asogbon,M. G., Geng, Y., Al-Timemy, A. H., Pirbhulal, S., Ji, N., et al. (2019). Intelligent emg pattern recognition control method for upper-limb multifunctional prostheses: advances, current challenges, and future prospects. Ieee Access 7, 10150–10165. doi:10.1109/ACCESS.2019.2891350
Schulte, R. V., Zondag, M., Buurke, J. H., and Prinsen, E. C. (2022). Multi-day emgbased knee joint torque estimation using hybrid neuromusculoskeletal modelling and convolutional neural networks. Front. Robotics AI 9, 869476. doi:10.3389/frobt.2022.869476
Sensinger, J. W., and Dosen, S. (2020). A review of sensory feedback in upper-limb prostheses from the perspective of human motor control. Front. Neurosci. 14, 345. doi:10.3389/fnins.2020.00345
Shaw, L., and Bagha, S. (2012). Online EMG signal analysis for diagnosis of neuromuscular diseases by using PCA and PNN. IEEE Access 4, 4453–4459.
Smith, L. H., Hargrove, L. J., Lock, B. A., and Kuiken, T. A. (2011). Determining the optimal window length for pattern recognition-basedmyoelectric control: balancing the competing effects of classification error and controller delay. IEEE Trans. Neural Syst. Rehabilitation Eng. 19, 186–192. doi:10.1109/TNSRE.2010.2100828
Stephens-Fripp, B., Alici, G., and Mutlu, R. (2018). A review of non-invasive sensory feedback methods for transradial prosthetic hands. IEEE Access 6, 6878–6899. doi:10.1109/ACCESS.2018.2791583
Szeto, A. Y., and Riso, R. R. (2018). Sensory feedback using electrical stimulation of the tactile sense. Rehabil. Eng., 29–78doi. doi:10.1201/9780203741009-3
Tigrini, A., Al-Timemy, A. H., Verdini, F., Fioretti, S., Morettini, M., Burattini, L., et al. (2023a). Decoding transient semg data for intent motion recognition in transhumeral amputees. Biomed. Signal Process. Control 85, 104936. doi:10.1016/j. bspc.2023.104936
Tigrini, A., Verdini, F., Fioretti, S., and Mengarelli, A. (2023b). On the decoding of shoulder joint intent ofmotion from transient emg: feature evaluation and classification. IEEE Trans. Med. Robotics Bionics 5, 1037–1044. doi:10.1109/TMRB.2023.3320260
Valle, G., Petrini, F. M., Strauss, I., Iberite, F., D’Anna, E., Granata, G., et al. (2018). Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Sci. Rep. 8, 16666. doi:10.1038/s41598-018-34910-w
Vargas, L., Huang, H., Zhu, Y., and Hu, X. (2021). Object recognition via evoked sensory feedback during control of a prosthetic hand. IEEE Robotics Automation Lett. 7, 207–214. doi:10.1109/LRA.2021.3122897
Widrow, B., and Hoff, M. E. (1988). “Adaptive switching circuits,” in Neurocomputing: foundations of research, 123–134.
Zhang, J., Hao, M., Yang, F., Liang, W., Sun, A., Chou, C.-H., et al. (2022). Evaluation of multiple perceptual qualities of transcutaneous electrical nerve stimulation for evoked tactile sensation in forearm amputees. J. Neural Eng. 19, 026041. doi:10. 1088/1741-2552/ac6062
Related Article on Qiita
CAN FD and CAN XL on arXiv
https://qiita.com/kaizen_nagoya/items/d8efb0da53cd3456f735
CAN FD & CAN XL on arXiv references
https://qiita.com/kaizen_nagoya/items/7df86c66084372a96f1d
CAN FD & CAN XL on arXiv references name order
https://qiita.com/kaizen_nagoya/items/ec5e4e4491228db534c0