Specification of ECU Resource Template, No.60, 2021-11
AUTOSAR R21-11記事一覧はこちら。
AUTOSAR 21-11, 120文書読んだ。2022年5月末に半分到達予定。
AUTOSAR R21-11(0) 仕様ダウンロード一覧。単語帳。参考文献資料作成
用語(terms)
Term | Description |
---|---|
Artifact | This is a Work Product Definition that provides a description and definition for tangible work product types. Artifacts may be composed of other artifacts ([8]). At a high level, an artifact is represented as a single conceptual file. |
AUTOSAR Tool | This is a software tool which supports one or more tasks defined as AUTOSAR tasks in the methodology. Depending on the supported tasks, an AUTOSAR tool can act as an authoring tool, a converter tool, a processor tool or as a combination of those (see separate definitions). |
AUTOSAR Authoring Tool | An AUTOSAR Tool used to create and modify AUTOSAR XML Descriptions. Example: System Description Editor. |
AUTOSAR Converter Tool | An AUTOSAR Tool used to create AUTOSAR XML files by converting information from other AUTOSAR XML files. Example: ECU Flattener |
AUTOSAR Definition | This is the definition of parameters which can have values. One could say that the parameter values are Instances of the definitions. But in the meta model hierarchy of AUTOSAR, definitions are also instances of the meta model and therefore considered as a description. Examples for AUTOSAR definitions are: EcucParameterDef, PostBuildVariantCriterion, SwSystemconst. |
AUTOSAR XML Description | In AUTOSAR this means "filled Template". In fact an AUTOSAR XML description is the XML representation of an AUTOSAR model. The AUTOSAR XML description can consist of several files. Each individual file represents an AUTOSAR partial model and shall validate successfully against the AUTOSAR XML schema. |
AUTOSAR Meta-Model | This is an UML2.0 model that defines the language for describing AUTOSAR systems. The AUTOSAR meta-model is an UML representation of the AUTOSAR templates. UML2.0 class diagrams are used to describe the attributes and their interrelationships. Stereotypes, UML tags and OCL expressions (object constraint language) are used for defining specific semantics and constraints. |
AUTOSAR Meta-Model Tool | The AUTOSAR Meta-Model Tool is the tool that generates different views (class tables, list of constraints, diagrams, XML Schema etc.) on the AUTOSAR meta-model. |
AUTOSAR Model | This is a representation of an AUTOSAR product. The AUTOSAR model represents aspects suitable to the intended use according to the AUTOSAR methodology. Strictly speaking, this is an instance of the AUTOSAR meta-model. The information contained in the AUTOSAR model can be anything that is representable according to the AUTOSAR meta-model. |
AUTOSAR Partial Model | In AUTOSAR, the possible partitioning of models is marked in the meta-model by atpSplitable. One partial model is represented in an AUTOSAR XML description by one file. The partial model does not need to fulfill all semantic constraints applicable to an AUTOSAR model. |
AUTOSAR Processor Tool | An AUTOSAR Tool used to create non-AUTOSAR files by processing information from AUTOSAR XML files. Example: RTE Generator |
AUTOSAR Specification Element | An AUTOSAR Specification Element is a named element that is part of an AUTOSAR specification. Examples: requirement, constraint, specification item, class or attribute in the meta model, methodology, deliverable, methodology activity, model element, bsw module etc. |
AUTOSAR Template | The term "Template" is used in AUTOSAR to describe the format different kinds of descriptions. The term template comes from the idea, that AUTOSAR defines a kind of form which shall be filled out in order to describe a model. The filled form is then called the description. In fact the AUTOSAR templates are now defined as a meta-model. |
AUTOSAR Validation Tool | A specialized AUTOSAR Tool which is able to check an AUTOSAR model against the rules defined by a profile. |
AUTOSAR XML Schema | This is a W3C XML schema that defines the language for exchanging AUTOSAR models. This Schema is derived from the AUTOSAR meta-model. The AUTOSAR XML Schema defines the AUTOSAR data exchange format. |
Blueprint | This is a model from which other models can be derived by copy and refinement. Note that in contrast to meta model resp. types, this process is not an instantiation. |
Instance | Generally this is a particular exemplar of a model or of a type. |
Life Cycle | Life Cycle is the course of development/evolutionary stages of a model element during its life time. |
Meta-Model | This defines the building blocks of a model. In that sense, a Meta-Model represents the language for building models. |
Meta-Data | This includes pertinent information about data, including information about the authorship, versioning, access-rights, timestamps etc. |
Model | A Model is an simplified representation of reality. The model represents the aspects suitable for an intended purpose. |
Partial Model | This is a part of a model which is intended to be persisted in one particular artifact. |
Pattern in GST | This is an approach to simplify the definition of the meta model by applying a model transformation. This transformation creates an enhanced model out of an annotated model. |
Profile Authoring Support Data | Data that is used for efficient authoring of a profile. E.g. list of referable constraints, meta-classes, meta-attributes or other reusable model assets (blueprints) |
Profile Authoring Tool | A specialized AUTOSAR Tool which focuses on the authoring of profiles for data exchange points. It e.g. provides support for the creation of profiles from scratch, modification of existing profiles or composition of existing profiles. |
Profile Compatibility Checker Tool | A specialized AUTOSAR Tool which focuses on checking the compatibility of profiles for data exchange. Note that this compatibility check includes manual compatibility checks by engineers and automated assistance using more formal algorithms. |
Profile Consistency Checker Tool | A specialized AUTOSAR Tool which focuses on checking the consistency of profiles. |
Property | A property is a structural feature of an object. As an example a “connector” has the properties “receive port” and “send port” Properties are made variant by the atpVariation. |
Prototype | This is the implementation of a role of a type within the definition of another type. In other words a type may contain Prototypes that in turn are typed by "Types". Each one of these prototypes becomes an instance when this type is instantiated. |
Type | A type provides features that can appear in various roles of this type. |
Value | This is a particular value assigned to a “Definition”. |
Variability | Variability of a system is its quality to describe a set of variants. These variants are characterized by variant specific property settings and / or selections. As an example, such a system property selection manifests itself in a particular “receive port” for a connection. This is implemented using the atpVariation. |
Variant | A system variant is a concrete realization of a system, so that all its properties have been set respectively selected. The software system has no variability anymore with respect to the binding time. This is implemented using EvaluatedVariantSet. |
Variation Binding | A variant is the result of a variation binding process that resolves the variability of the system by assigning particular values/selections to all the system’s properties. This is implemented by VariationPoint. |
Variation Binding Time | The variation binding time determines the step in the methodology at which the variability given by a set of variable properties is resolved. This is implemented by vh.LatestBindingtime at the related properties. |
Variation Definition Time | The variation definition time determines the step in the methodology at which the variation points are defined. |
Variation Point | A variation point indicates that a property is subject to variation. Furthermore, it is associated with a condition and a binding time which define the system context for the selection / setting of a concrete variant. This is implemented by VariationPoint. |
英日
日本語は仮訳
T.B.D.
参考(reference)
Glossary も 参考に入れましょう。
https://www.autosar.org/fileadmin/standards/foundation/21-11/AUTOSAR_TR_Glossary.pdf
[1] Requirements on ECU Resource Template
AUTOSAR_RS_ECUResourceTemplate
[2] Meta Model
AUTOSAR_MMOD_MetaModel
[3] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate
[4] AUTOSAR XML Schema Production Rules
AUTOSAR_TPS_XMLSchemaProductionRules
[5] Standardization Template
AUTOSAR_TPS_StandardizationTemplate
[6] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate
[7] IEEE standard for radix-independent floating-point arithmetic
(ANSI/IEEE Std 854-1987)
[8] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/