Software Defined Vehicle
SDA
SDR
SDN
SDV
arXiv papers
We search "SDV" on the arXiv at 12 July 2025.
There are 17 papers on the www.arxiv.org.
1 Towards Mixed-Criticality Software Architectures for Centralized HPC Platforms in Software-Defined Vehicles: A Systematic Literature Review
Lucas Mauser, Eva Zimmermann, Pavel Nedvědický, Tobias Eisenreich, Moritz Wäschle, Stefan Wagner
https://arxiv.org/pdf/2506.05822
References
- Akkaya, S., et al.: A modular five-layered v-shaped architecture for autonomous vehicles. In: 2019 11th International Conference on Electrical and Electronics Engineering (ELECO). pp. 850–854. IEEE (2019), https://doi.org/10.23919/ELECO47770.2019.8990402
- Aleti, A., et al.: Software architecture optimization methods: A systematic literature review. IEEE Transactions on Software Engineering 39(5), 658–683 (2012), https://doi.org/10.1109/TSE.2012.64
- Ampatzoglou, A., et al.: Identifying, categorizing and mitigating threats to validity in software engineering secondary studies. Information and software technology 106, 201–230 (2019), https://doi.org/10.1016/j.infsof.2018.10.006
- Askaripoor, H., et al.: E/e architecture synthesis: Challenges and technologies. Electronics 11(4), 518 (2022), https://doi.org/10.3390/electronics11040518
- AUTOSAR: Autosar adaptive platform (2024), available at: https://www.autosar.org/standards/adaptive-platform. Accessed: 2025-03-07
- AUTOSAR: Autosar classic platform (2024), available at: https://www.autosar.org/standards/classic-platform. Accessed: 2025-03-07
- Avci, C., et al.: Software architectures for big data: a systematic literature review. Big Data Analytics 5(1), 5 (2020), https://doi.org/10.1186/s41044-020-00045-1
- Bandur, V., et al.: Making the case for centralized automotive e/e architectures. IEEE Transactions on Vehicular Technology 70(2), 1230–1245 (2021), https://doi.org/10.1109/TVT.2021.3054934
- Banijamali, A.,etal.:Softwarearchitecturesof theconvergence ofcloudcomputing and the internet of things:A systematic literature review.InformationandSoftware Technology 122, 106271 (2020), https://doi.org/10.1016/j.infsof.2020.106271
- Bauer, T., et al.: Reference architectures for automotive software. In: Reference ArchitecturesforCriticalDomains:IndustrialUsesandImpacts,pp.73–111.Springer (2022), https://doi.org/10.1007/978-3-031-16957-1_5
- Bordoloi, U., et al.: Autonomy-driven emerging directions in software-defined vehicles. In: 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). pp. 1–6. IEEE (2023), https://doi.org/10.23919/DATE56975.2023.10136910
- Bucaioni, A., et al.: Modelling centralised automotive e/e software architectures. Advanced Engineering Informatics 59, 102289 (2024), https://doi.org/10.1016/j.aei.2023.102289
- Cinque, M., et al.: Certify the uncertified: Towards assessment of virtualization for mixed-criticality in the automotive domain. In: 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). pp. 8–11. IEEE (2022), https://doi.org/10.1109/DSN-W54100.2022.00012 Towards Mixed-Criticality Software Architectures 15
- Collin, A., et al.: Autonomous driving systems hardware and software architecture exploration: optimizing latency and cost under safety constraints. Systems Engineering 23(3), 327–337 (2020), https://doi.org/10.1002/sys.21528
- COVESA: Vehicle signal specification (2025), available at: https://covesa.github.io/vehicle_signal_specification/introduction/index.html. Accessed: 2025-03-07
- Druml, N., et al.: Time-of-flight 3d imaging for mixed-critical systems. In: 2015 IEEE 13th International Conference on Industrial Informatics (INDIN). pp. 1432–1437. IEEE (2015), https://doi.org/10.1109/INDIN.2015.7281943
- El-Bayoumi, A.: An enhanced algorithm for memory systematic faults detection in multicore architectures suitable for mixed-critical automotive applications. International Journal of Safety and Security Engineering 10(4), 467–474 (2020), https://doi.org/10.18280/ijsse.100405
- Ferraro, D., et al.: Time-sensitive autonomous architectures. Real-Time Systems 59(4), 568–608 (2023), https://doi.org/10.1007/s11241-023-09404-2
- Haghighatkhah,A.,etal.:Automotivesoftwareengineering:Asystematicmapping study. Journal of Systems and Software 128, 25–55 (2017), https://doi.org/10.1016/j.jss.2017.03.005
- Holstein,T.,Wietzke,J.:Contradiction of separation through virtualization and inter virtual machine communication in automotive scenarios. In: Proceedings of the 2015 European Conference on Software Architecture Workshops. pp. 1–5 (2015), https://doi.org/10.1145/2797433.2797437
- Kadry, H.M., et al.: Electrical architecture and in-vehicle networking: Challenges and future trends.In:2022IEEEInternationalSymposiumonCircuitsandSystems (ISCAS). pp. 1009–1013. IEEE (2022), https://doi.org/10.1109/ISCAS48785.2022.993748122. Kitchenham, B., et al.: Guidelines for performing systematic literature reviews in software engineering. Tech. rep., Technical report, ver. 2.3 ebse (2007)
- Kugele, S., et al.: Architectural patterns for cross-domain personalised automotive functions. In: 2020 IEEE international conference on software architecture (ICSA).pp. 191–201. IEEE (2020), https://doi.org/10.1109/ICSA47634.2020.00026
- Lee, J., Wang, L.: A method for designing and analyzing automotive software architecture:A case study for an autonomous electric vehicle. In:2021International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). pp. 20–26. IEEE (2021), https://doi.org/10.1109/ICCEAI52939.2021.00004
- Lex,J.,etal.:Hyfar:A hypervisor-based faulttolerance approach for heterogeneous automotive real-time systems. JournalofSystemsArchitecture156,103263(2024), https://doi.org/10.1016/j.sysarc.2024.103263
- Li, Y., et al.: Key technology and standardization route for new electronic and electrical architecture of intelligent and connected vehicles. In: 2023 3rd International Conference on Electrical Engineering and Control Science (IC2ECS). pp. 323–328. IEEE (2023), https://doi.org/10.1109/IC2ECS60824.2023.10493525
- Lu, S., et al.: A comparison of end-to-end architectures for connected vehicles. In: 2022 Fifth International Conference on Connected and Autonomous Driving. pp.72–80. IEEE (2022), https://doi.org/10.1109/MetroCAD56305.2022.00015
- Maier, J., Reuss, H.C.: Design of zonal e/e architectures in vehicles using a coupled approach of k-means clustering and dijkstra’s algorithm. Energies 16(19), 6884 (2023), https://doi.org/10.3390/en16196884
- Mauser, L., Wagner, S.: Centralization potential of automotive e/e architectures. Journal of Systems and Software p. 112220 (2024), https://doi.org/10.1016/j.jss. 2024.112220 16 L. Mauser et al.
- Mauser, L., et al.: Methodical approach for centralization evaluation of modern automotive e/e architectures. In: European Conference on Software Architecture. pp. 165–179. Springer (2022), https://doi.org/10.1007/978-3-031-36889-9_13
- Mourão, E., et al.: On the performance of hybrid search strategies for systematic literature reviews in software engineering. Information and software technology 123, 106294 (2020), https://doi.org/10.1016/j.infsof.2020.106294
- Niedballa, D., Reuss, H.C.: Mpsoc-based platform for fail-operational control of an automated research vehicle. Journal of Tongji University (Natural Science) 50(S1), 151–155 (2024), https://doi.org/10.11908/j.issn.0253-374x.23717
- Ouzzani, M., et al.: Rayyan—a web and mobile app for systematic reviews. Sys- tematic reviews 5, 1–10 (2016), https://doi.org/10.1186/s13643-016-0384-4
- Pelliccione, P., et al.: Automotive architecture framework: The experience of volvo cars. Journal of systems architecture 77, 83–100 (2017), https://doi.org/10.1016/j.sysarc.2017.02.005
- Püllen, D., et al.: A security process for the automotive service-oriented software
architecture.IEEETransactionsonVehicularTechnology 73(4),5036–5053(2023),
https://doi.org/10.1109/ETFA.2019.8868957 - Savithry, J., et al.: Design of criticality-aware scheduling for advanced driver
assistance systems. In: 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). pp. 1407–1410. IEEE (2019),
https://doi.org/10.1109/ETFA.2019.8868957 - Sommer, S., et al.: Race: A centralized platform computer based architecture for
automotive applications. In: 2013 IEEE International Electric Vehicle Conference
(IEVC). pp. 1–6. IEEE (2013), https://doi.org/10.1109/IEVC.2013.6681152 - Stähle, H., et al.: Towards the deployment of a centralized ict architecture in the
automotive domain. In: 2013 2nd Mediterranean Conference on Embedded Com-
puting. pp. 66–69. IEEE (2013), https://doi.org/10.1109/MECO.2013.6601320 - Staron, M.: Automotive software architectures. Springer (2021), https://doi.org/
10.1007/978-3-030-65939-4 - Sundharam, S.M., et al.: Software architecture modeling of autosar-based multi-
core mixed-critical electric powertrain controller. Modelling 2(4), 706–727 (2021),
https://doi.org/10.3390/modelling2040038 - Surjekar, N.N., et al.: A case study on migrating towards functionally safe zonal
architecture using mbse. In: INCOSE International Symposium. vol. 33, pp. 1403– - Wiley Online Library (2023), https://doi.org/10.1002/iis2.13089
- Vogelsang, A.: Feature dependencies in automotive software systems: Extent,
awareness, and refactoring. Journal of Systems and Software 160, 110458 (2020),
https://doi.org/10.1016/j.jss.2019.110458 - Wallin, P., et al.: Problems and their mitigation in system and software ar-
chitecting. Information and Software Technology 54(7), 686–700 (2012), https:
//doi.org/10.1016/j.infsof.2012.01.004 - Xie, G., et al.: Recent advances and future trends for automotive functional safety
design methodologies. IEEE Transactions on Industrial Informatics 16(9), 5629–
5642 (2020), https://doi.org/10.1109/TII.2020.2978889 - Zerfowski, D., Lock, A.: Functional architecture and e/e-architecture–a chal-
lenge for the automotive industry. In: 19. Internationales Stuttgarter Symposium:
Automobil-und Motorentechnik. pp. 909–920. Springer (2019), https://doi.org/10.
1007/978-3-658-25939-6_70 - Zhou, X., et al.: Development of vehicle domain controller based on ethernet. In:
Journal of Physics: Conference Series. vol. 1802, p. 022065. IOP Publishing (2021),
https://doi.org/10.1088/1742-6596/1802/2/022065
2 Automating Automotive Software Development: A Synergy of Generative AI and Formal Methods
Fengjunjie Pan, Yinglei Song, Long Wen, Nenad Petrovic, Krzysztof Lebioda, Alois Knoll
https://arxiv.org/pdf/2505.02500
REFERENCES
[1] “The case for an end-to-end automotive-software platform,” https://
www.mckinsey.com/industries/automotive-and-assembly/our-insights/
the-case-for-an-end-to-end-automotive-software-platform, accessed:
2025-03-28.
[2] A. Matarazzo and R. Torlone, “A survey on large language models
with some insights on their capabilities and limitations,” 2025.
[Online]. Available: https://arxiv.org/abs/2501.04040v1
[3] A. Phatale and A. Kaushik, “Generative ai adoption in automotive
vehicle technology: Case study of custom gpt,” Journal of Artificial
Intelligence & Cloud Computing, vol. 3, pp. 1–5, 11 2024.
[4] N. Petrovic, K. Lebioda, V. Zolfaghari, A. Schamschurko, S. Kirchner,
N. Purschke, F. Pan, and A. Knoll, “Llm-driven testing for autonomous
driving scenarios,” in 2024 2nd International Conference on Founda-
tion and Large Language Models (FLLM), 2024, pp. 173–178.
[5] F. Heckmann and R. M¨ unzenberger, “Event-chain-centric architecture
design of driver assistance systems,” http://inchron.com/wp-content/
uploads/2021/12/ESE21 Muenzenberger Heckmann.pdf, 2021,
accessed: 2025-04-07.
[6] P. Iyenghar, L. Huning, and E. Pulvermueller, “Automated end-to-end
timing analysis of autosar-based causal event chains,” in 15th Inter-
national Conference on Evaluation of Novel Approaches to Software
Engineering, 2020, pp. 477–489.
[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.
[8] A. Abdalla, H. Pandey, B. Shomali, J. Schaub, A. M¨ uller, M. Eisen-
barth, and J. Andert, “Generative artificial intelligence for model-based
graphical programming in automotive function development,” Novem-
ber 10 2024, available at SSRN: https://ssrn.com/abstract=5153452 or
http://dx.doi.org/10.2139/ssrn.5153452.
[9] M. S. Patil, G. Ung, and M. Nyberg, “Towards specification-driven
llm-based generation of embedded automotive software,” in Bridging
the Gap Between AI and Reality, B. Steffen, Ed. Cham: Springer
Nature Switzerland, 2025, pp. 125–144.
[10] A. Nouri, J. Andersson, K. Hornig, Z. Fei, E. Knabe, H. Sivencrona,
B. Cabrero-Daniel, and C. Berger, “On simulation-guided llm-based
code generation for safe autonomous driving software,” pp. 1–11,
2025.
[11] K. Vinoth Kannan, Model-Based Automotive Software Development.
Cham: Springer International Publishing, 2021, pp. 71–87.
[12] J. Holtmann, J. Meyer, and M. Meyer, “A seamless model-based
development process for automotive systems,” 02 2011, pp. 79–88.
[13] F. Pan, M. Rickert, T. Betz, L. Wen, J. Lin, N. Petrovic, M. Lienkamp,
and A. Knoll, “Toward software-defined vehicles: From model-based
engineering to virtualization-based deployment,” IEEE Access, vol. 12,
pp. 192 127–192 145, 2024.
[14] N. Petrovic, F. Pan, V. Zolfaghari, and A. Knoll, “Llm-based iterative
approach to metamodeling in automotive,” 2025.
[15] F. Pan, N. Petrovic, V. Zolfaghari, L. Wen, and A. Knoll, “Llm-enabled
instance model generation,” 2025.
[16] F. Pan, V. Zolfaghari, L. Wen, N. Petrovic, J. Lin, and A. Knoll,
“Generative ai for ocl constraint generation: Dataset collection and
llm fine-tuning,” in 2024 IEEE International Symposium on Systems
Engineering (ISSE), 2024, pp. 1–8.
[17] OMG, Object Constraint Language Version 2.4, Feb. 2014.
[18] ——, Meta Object Facility, 2016.
[19] D. Pilone and N. Pitman, UML 2.0 in a Nutshell. ” O’Reilly Media,
Inc.”, 2005.
[20] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML:
the systems modeling language. Morgan Kaufmann, 2014.
[21] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.
[22] OBEO, “Generate anything from any emf model,” https://eclipse.dev/
acceleo/, accessed: 2024-03-25.
[23] “Ros 2 pointcloud <-> laserscan converters,” https://github.com/
ros-perception/pointcloud to laserscan, accessed: 2025-04-18.
3 AUTOFRAME -- A Software-driven Integration Framework for Automotive Systems
Sven Kirchner, Nils Purschke, Chengdong Wu, Muhammed Aqib Khan, Divye Dixit, Alois C. Knoll
REFERENCES
[1] [2] [3] [4] Vard Antinyan. “Revealing the complexity of automo-
tive software”. In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering. 2020, pp. 1525–1528.
Samarjit Chakraborty et al. “Embedded systems and
software challenges in electric vehicles”. In: 2012
Design, Automation & Test in Europe Conference &
Exhibition (DATE). 2012, pp. 424–429. DOI: 10 .
1109/DATE.2012.6176508.
Gabriel Leen and Donal Heffernan. “Expanding auto-
motive electronic systems”. In: Computer 35.1 (2002),
pp. 88–93.
Kenneth Lind and Rogardt Heldal. “Automotive Sys-
tem Development Using Reference Architectures”. In:
2012 35th Annual IEEE Software Engineering Work-
shop. 2012, pp. 42–51. DOI: 10.1109/SEW.2012.
[5] Hadi Askaripoor, Morteza Farzaneh, and Alois Knoll.
“E/E Architecture Synthesis: Challenges and Tech-
nologies”. In: Electronics 11 (Feb. 2022), p. 518. DOI:
10.3390/electronics11040518.
[6] Ahmed Abdallah et al. “Hardware/Software Codesign
of Aerospace and Automotive Systems”. In: Proceed-
ings of the IEEE 98.4 (2010), pp. 584–602. DOI: 10.
1109/JPROC.2009.2036747.
[7] Matthias Traub, Alexander Maier, and Kai L. Bar-
beh¨ on. “Future Automotive Architecture and the Im-
pact of IT Trends”. In: IEEE Software 34.3 (2017),
pp. 27–32. DOI: 10.1109/MS.2017.69.
[8] Ondrej Burkacky et al. “Rethinking car software and
electronics architecture”. In: McKinsey & Company 11
(2018).
[9] Simon F¨ urst et al. “AUTOSAR–A Worldwide Stan-
dard is on the Road”. In: 14th International VDI
Congress Electronic Systems for Vehicles, Baden-
Baden. Vol. 62. 5. Citeseer. 2009.
[10] Stephan Sommer et al. “RACE: A Centralized Plat-
form Computer Based Architecture for Automotive
Applications”. In: 2013 IEEE International Electric
Vehicle Conference (IEVC). 2013, pp. 1–6. DOI: 10.
1109/IEVC.2013.6681152.
[11] Hauke St¨ ahle et al. “Towards the deployment of a
centralized ICT architecture in the automotive do-
main”. In: 2013 2nd Mediterranean Conference on
Embedded Computing (MECO). 2013, pp. 66–69. DOI:
10.1109/MECO.2013.6601320.
[12] Jonas Maier and Hans-Christian Reuss. “Design of
Zonal E/E Architectures in Vehicles Using a Coupled
Approach of k-Means Clustering and Dijkstra’s Algo-
rithm”. In: Energies 16 (Sept. 2023), p. 6884. DOI:
10.3390/en16196884.
[13] Victor Bandur et al. “Making the Case for Centralized
Automotive E/E Architectures”. In: IEEE Transactions
on Vehicular Technology 70.2 (2021), pp. 1230–1245.
DOI: 10.1109/TVT.2021.3054934.
[14] Hamza Khemissa and Pascal Urien. “Centralized ar-
chitecture for ECU security management in connected
and autonomous vehicles”. In: 2022 13th International
Conference on Information and Communication Tech-
nology Convergence (ICTC). 2022, pp. 1409–1414.
DOI: 10.1109/ICTC55196.2022.9952757.
[15] Marco Haeberle et al. “Softwarization of Automotive
E/E Architectures: A Software-Defined Networking
Approach”. In: 2020 IEEE Vehicular Networking Con-
ference (VNC). 2020, pp. 1–8. DOI: 10 . 1109 /
VNC51378.2020.9318389.
[16] Hauke St¨ ahle et al. “Towards the deployment of a
centralized ICT architecture in the automotive do-
main”. In: 2013 2nd Mediterranean Conference on
Embedded Computing (MECO). 2013, pp. 66–69. DOI:
10.1109/MECO.2013.6601320.
[17] Christian Buckl et al. “The software car: Building ICT
architectures for future electric vehicles”. In: 2012
IEEE International Electric Vehicle Conference. 2012,
pp. 1–8. DOI: 10.1109/IEVC.2012.6183198.
[18] Jong-Woon Yoo et al. “An Android-based automotive
middleware architecture for plug-and-play of applica-
tions”. In: 2012 IEEE Conference on Open Systems.
IEEE. 2012, pp. 1–6.
[19] Alexandre Bouard et al. “Driving automotive middle-
ware towards a secure ip-based future”. In: Proc. of
ESCAR (2012).
[20] Richard Anthony and Cecilia Ekelin. “Policy-driven
self-management for an automotive middleware”. In:
Proceedings of the 1st International Workshop on
Policy-Based Autonomic Computing (PBAC 2007).
2007, pp. 11–15.
[21] Dirk Merkel et al. “Docker: lightweight linux contain-
ers for consistent development and deployment”. In:
Linux j 239.2 (2014), p. 2.
[22] Alexey Dosovitskiy et al. “CARLA: An Open Urban
Driving Simulator”. In: Proceedings of the 1st Annual
Conference on Robot Learning. 2017, pp. 1–16.
[23] Steve Klabnik and Carol Nichols. The Rust program-
ming language. No Starch Press, 2023.
[24] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s
Journal of Software Tools (2000).
4 APIKS: A Modular ROS2 Framework for Rapid Prototyping and Validation of Automated Driving Systems
João-Vitor Zacchi, Edoardo Clementi, Núria Mata
https://arxiv.org/pdf/2502.20507
REFERENCES
[1] S. Wang, Z. Li, Y. Wang, W. Zhao, and H. Wei, “Quantification of
safety improvements and human-machine tradeoffs in the transition to
automated driving,” vol. 199, p. 107523.
[2] S. Feng, H. Sun, X. Yan, H. Zhu, Z. Zou, S. Shen, and H. X. Liu,
“Dense reinforcement learning for safety validation of autonomous
vehicles,” Nature, vol. 615, no. 7953, pp. 620–627, Mar. 2023. [Online].
Available: https://doi.org/10.1038/s41586-023-05732-2
[3] Baidu, “Apollo: An open autonomous driving platform.” [Online].
Available: https://github.com/ApolloAuto/apollo
[4] A. Foundation, “Autoware.” [Online]. Available: https://autoware.org/
[5] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot Operating System 2: Design, Architecture, and Uses In
The Wild,” Nov. 2022, arXiv:2211.07752. [Online]. Available:
http://arxiv.org/abs/2211.07752
[6] ISO, “Road vehicles — Safety and cybersecurity for automated
driving systems — Design, verification and validation,” 2020. [Online].
Available: https://www.iso.org/standard/80363.html
[7] G. Pardo-Castellote, “OMG Data-Distribution Service: architectural
overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings., May 2003, pp. 200–206.
[Online]. Available: https://ieeexplore.ieee.org/document/1203555
[8] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System.”
[9] Baidu, “Introduction into Cyber RT.” [Online]. Available: https:
//github.com/fortiss/apollo/blob/r5.5.0/cyber/README.md
[10] V. M. Raju, V. Gupta, and S. Lomate, “Performance of Open
Autonomous Vehicle Platforms: Autoware and Apollo,” in 2019 IEEE
5th International Conference for Convergence in Technology (I2CT),
Mar. 2019, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/
document/9033734/?arnumber=9033734
[11] “ZeroMQ.” [Online]. Available: https://zeromq.org/
[12] R. Novickis, A. Levinskis, R. Kadikis, V. Fescenko, and
K. Ozols, “Functional Architecture for Autonomous Driving and its
Implementation,” in 2020 17th Biennial Baltic Electronics Conference
(BEC), Oct. 2020, pp. 1–6, iSSN: 2382-820X. [Online]. Available:
https://ieeexplore.ieee.org/document/9276943/?arnumber=9276943
[13] N. Kukulicic, D. Samardzic, A. Bucaioni, and S. Mubeen, “Automotive
service-oriented architectures: a systematic mapping study,” in 2022 48th
euromicro conference on software engineering and advanced applica-
tions (SEAA), 2022, pp. 459–466.
[14] S. Kugele, P. Obergfell, M. Broy, O. Creighton, M. Traub, and
W. Hopfensitz, “On service-orientation for automotive software,” in 2017
IEEE international conference on software architecture (ICSA), 2017,
pp. 193–202.
[15] J. Lotz, A. Vogelsang, O. Benderius, and C. Berger, “Microservice
architectures for advanced driver assistance systems: a case-study,” in
2019 IEEE international conference on software architecture companion
(ICSA-c), 2019, pp. 45–52.
[16] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara,
“From monolithic to microservices: An experience report from the
banking domain,” IEEE Software, vol. 35, no. 3, pp. 50–55, 2018.
[17] S. Kugele, D. Hettler, and J. Peter, “Data-centric communication and
containerization for future automotive software architectures,” in 2018
IEEE international conference on software architecture (ICSA), 2018,
pp. 65–6509.
[18] “Mechanical Simulation Corporation.” [Online]. Available: https:
//www.carsim.com/
[19] “CarMaker | IPG Automotive.” [Online]. Available: https://www.
ipg-automotive.com/en/products-solutions/software/carmaker/
[20] “Automotive Simulation • Driving Simulation • Autonomous Driving •
rFpro.” [Online]. Available: https://rfpro.com/
[21] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of
the 1st annual conference on robot learning, ser. Proceedings of
machine learning research, S. Levine, V. Vanhoucke, and K. Goldberg,
Eds., vol. 78. PMLR, Nov. 2017, pp. 1–16. [Online]. Available:
https://proceedings.mlr.press/v78/dosovitskiy17a.html
[22] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Fl¨ otter¨ od,
R. Hilbrich, L. L¨ ucken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018,
pp. 2575–2582.
[23] C. Sommer, D. Eckhoff, A. Brummer, D. S. Buse, F. Hagenauer,
S. Joerer, and M. Segata, “Veins: The Open Source Vehicular Network
Simulation Framework,” in Recent Advances in Network Simulation.
Springer International Publishing, 2019, pp. 215–252.
[24] K. Schrab, M. Neubauer, R. Protzmann, I. Radusch, S. Manganiaris,
P. Lytrivis, and A. J. Amditis, “Modeling an ITS Management Solution
for Mixed Highway Traffic With Eclipse MOSAIC,” Trans. Intell.
Transport. Sys., vol. 24, no. 6, pp. 6575–6585, Jun. 2023.
[25] ISO, “Road vehicles — Functional safety.” [Online]. Available:
https://www.iso.org/standard/68383.html
[26] ISO and SAE, “Road vehicles — Cybersecurity engineering.”
[27] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann,
F. Kuhnt, and M. Mayr, “Lanelet2: A high-definition map framework
for the future of automated driving,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), Nov.
2018, pp. 1672–1679, iSSN: 2153-0017. [Online]. Available: https:
//ieeexplore.ieee.org/document/8569929
[28] ISO, “Road Vehicles — Test scenarios for automated driving systems
Specification for operational design domain,” 2023. [Online]. Available:
https://www.iso.org/standard/78952.html
[29] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model predictive
heuristic control: Applications to industrial processes,” vol. 14, no. 5,
pp. 413–428.
[30] R. Trauth, K. Moller, G. W¨ ursching, and J. Betz, “FRENETIX: A High-
Performance and Modular Motion Planning Framework for Autonomous
Driving,” vol. 12, pp. 127 426–127 439.
[31] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Fren´ et Frame,” in 2010
IEEE International Conference on Robotics and Automation. IEEE,
pp. 987–993.
[32] Ultralytics, “Yolov8,” https://github.com/ultralytics/ultralytics, 2023.
5 Virtualization & Microservice Architecture for Software-Defined Vehicles: An Evaluation and Exploration
Long Wen, Markus Rickert, Fengjunjie Pan, Jianjie Lin, Yu Zhang, Tobias Betz, Alois Knoll
https://arxiv.org/pdf/2412.09995
[1] N. Steinkamp, R. Levine, and R. Roth, “2021 automotive defect
& recall report,” Stout Risius Ross, accessed: 2023-04-14. [Online].
Available: https://www.stout.com/en/insights/report/2021-automotive-w
arranty-and-defect-report
[2] E. Sax, R. Reussner, H. Guissouma, and H. Klare, “A survey on
the state and future of automotive software release and configuration
management,” Karlsruhe Institute of Technology, Karlsruhe Reports in
Informatics, 2017.
[3] D. Cao, X. Wang, L. Li, C. Lv, X. Na, Y. Xing, X. Li, Y. Li, Y. Chen,
and F.-Y. Wang, “Future directions of intelligent vehicles: Potentials,
possibilities, and perspectives,” IEEE Transactions on Intelligent Vehi-
cles, vol. 7, no. 1, pp. 7–10, 2022.
[4] J. P. Bedretchuk, S. Arribas Garc´ ıa, T. Nogiri Igarashi, R. Canal,
A. Wedderhoff Spengler, and G. Gracioli, “Low-cost data acquisition
system for automotive electronic control units,” Sensors, vol. 23, no. 4,
p. 2319, 2023.
[5] A. Lenk, S. Dieh, and V. Lang, “Reinventing automotive engineering for
software-defined vehicles,” https://aws.amazon.com/de/blogs/industries
/reinventing-automotive-engineering-for-software-defined-vehicles/,
accessed: 2022-02-13.
[6] P. A. D. S. N. Wijesekara, K. L. K. Sudheera, G. G. N. Sandamali,
and P. H. J. Chong, “An optimization framework for data collection in
software defined vehicular networks,” Sensors, vol. 23, no. 3, p. 1600,
2023.
[7] M. A. B. S. Abir and M. Z. Chowdhury, “Digital twin-based software-
defined uav networks using queuing model,” in International Conference
on Signal Processing and Integrated Networks (SPIN). IEEE, 2023,
pp. 479–483.
[8] W. Haas and P. Langjahr, “Cross-domain vehicle control units in modern
E/E architectures,” in Internationales Stuttgarter Symposium, Apr. 2016,
pp. 1619–1627.
[9] N. Jain and S. Choudhary, “Overview of virtualization in cloud comput-
ing,” in Proceedings of the Symposium on Colossal Data Analysis and
Networking, 2016, pp. 1–4.
[10] L. Malhotra, D. Agarwal, A. Jaiswal et al., “Virtualization in cloud
computing,” J. Inform. Tech. Softw. Eng, vol. 4, no. 2, pp. 1–3, 2014.
[11] R. Queiroz, T. Cruz, J. Mendes, P. Sousa, and P. Sim˜ oes, “Container-
based virtualization for real-time industrial systems—a systematic re-
view,” ACM Computing Surveys, vol. 56, no. 3, pp. 1–38, 2023.
[12] S. Hakak, T. R. Gadekallu, P. K. R. Maddikunta, S. P. Ramu, M. Pari-
mala, C. De Alwis, and M. Liyanage, “Autonomous vehicles in 5g and
beyond: A survey,” Vehicular Communications, vol. 39, p. 100551, 2023.
[13] S. Giallorenzo, J. Mauro, M. G. Poulsen, and F. Siroky, “Virtualization
costs: Benchmarking containers and virtual machines against bare-
metal,” SN Computer Science, vol. 2, no. 404, 2021.
[14] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. F. De Rose, “Performance evaluation of container-based virtual-
ization for high performance computing environments,” in Proceedings
of the Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, 2013, pp. 233–240.
[15] A. Elsayed and N. Abdelbaki, “Performance evaluation and comparison
of the top market virtualization hypervisors,” in 2013 8th International
Conference on Computer Engineering & Systems (ICCES). IEEE, 2013,
pp. 45–50.
[16] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated per-
formance comparison of virtual machines and Linux containers,” IBM
Research Division, IBM Research Report RC25482, 2014.
[17] Z. Kozhirbayev and R. O. Sinnott, “A performance comparison
of container-based technologies for the cloud,” Future Generation
Computer Systems, vol. 68, pp. 175–182, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X16303041
[18] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, “KVM, Xen and
Docker: A performance analysis for ARM based NFV and cloud
computing,” in Proceedings of the IEEE Workshop on Advances in
Information, Electronic and Electrical Engineering, 2015.
[19] R. Sundar, F. Armin, G. Lothar, S. Idriz, and D. M. Nirmala, “Hypervisor
for consolidating real-time automotive control units: Its procedure, im-
plications and hidden pitfalls,” Journal of Systems Architecture, vol. 82,
pp. 37–48, 2018.
[20] “Development platform for SOAFEE,” https://www.adlinktech.com/en/
soafee, accessed: 2023-04-14.
[21] O. Benderius, C. Berger, and V. Malmsten Lundgren, “The best rated
human–machine interface design for autonomous vehicles in the 2016
grand cooperative driving challenge,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 4, pp. 1302–1307, 2018.
[22] C. Berger, B. Nguyen, and O. Benderius, “Containerized development
and microservices for self-driving vehicles: Experiences & best prac-
tices,” in 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), 2017, pp. 7–12.
[23] J. Lotz, A. Vogelsang, O. Benderius, and C. Berger, “Microservice architectures for advanced driver assistance systems: A case-study,” in 2019 IEEE International Conference on Software Architecture Companion (ICSA-C), 2019, pp. 45–52.
[24] M. Kuhn and J. Franke, “Smart manufacturing traceability for automo-
tive e/e systems enabled by event-driven microservice architecture,” in
2020 IEEE 11th International Conference on Mechanical and Intelligent
Manufacturing Technologies (ICMIMT), 2020, pp. 142–148.
[25] C. Dall and J. Nieh, “Kvm/arm: The design and implementation of the
linux arm hypervisor,” SIGPLAN Not., vol. 49, no. 4, p. 333–348, feb
2014. [Online]. Available: https://doi.org/10.1145/2644865.2541946
[26] D. Reinhardt and G. Morgan, “An embedded hypervisor for safety-
relevant automotive e/e-systems,” in Proceedings of the 9th IEEE
International Symposium on Industrial Embedded Systems (SIES 2014),
2014, pp. 189–198.
[27] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Proceedings of the Linux symposium,
vol. 1, no. 8. Dttawa, Dntorio, Canada, 2007, pp. 225–230.
[28] C. Boettiger, “An introduction to docker for reproducible research,”
vol. 49, no. 1, p. 71–79, jan 2015. [Online]. Available: https:
//doi.org/10.1145/2723872.2723882
[29] J. Turnbull, The Docker Book: Containerization is the new virtualization.
James Turnbull, 2014.
[30] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and
Tomorrow. Cham: Springer International Publishing, 2017, pp. 195–
216. [Online]. Available: https://doi.org/10.1007/978-3-319-67425-4 12
[31] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA), 2016, pp.
44–51.
[32] H. J. Curnow and B. A. Wichmann, “A synthetic benchmark,” Computer
Journal, vol. 19, no. 1, pp. 43–49, Jan. 1976.
[33] R. P. Weicker, “Dhrystone: A synthetic systems programming bench-
mark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030,
Oct. 1984.
[34] T. Leemhuis, “Linux kernel compile benchmarks kcbench and
kcbenchrate,” accessed: 2023-04-14. [Online]. Available: https://gitlab
.com/knurd42/kcbench
[35] Hollander, M. Rhett, and V. Bolotof, Paul, “RAMspeed, a cache
and memory benchmarking tool,” accessed: 2023-04-14. [Online].
Available: http://alasir.com/software/ramspeed/
[36] J. Dugan, S. Elliott, J. Poskanzer, and K. Prabhu, “iPerf - the ultimate
speed test tool for TCP, UDP and SCTP,” accessed: 2023-04-14.
[Online]. Available: https://iperf.fr/
[37] A. Tridgell and R. Sahlberg, “DBENCH,” accessed: 2023-04-14.
[Online]. Available: https://dbench.samba.org
[38] R. Coker, “Bonnie++,” accessed: 2023-04-14. [Online]. Available:
https://www.coker.com.au/bonnie++/
[39] L. Wen, M. Rickert, F. Pan, J. Lin, and A. Knoll, “Bare-metal vs.
hypervisors and containers: Performance evaluation of virtualization
technologies for software-defined vehicles,” in 2023 IEEE Intelligent
Vehicles Symposium (IV), 2023, pp. 1–8.
[40] T. Combe, A. Martin, and R. Di Pietro, “To docker or not to docker: A
security perspective,” IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62,
2016.
[41] E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan, “Security of
os-level virtualization technologies: Technical report,” 2014.
[42] B. Burns, J. Beda, K. Hightower, and L. Evenson, Kubernetes: up and
running. ” O’Reilly Media, Inc.”, 2022.
[43] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “OPC UA
versus ROS, DDS, and MQTT: Performance evaluation of Industry 4.0
protocols,” in Proceedings of the IEEE International Conference on
Industrial Technology, 2019, pp. 955–962.
6 Contextualizing Security and Privacy of Software-Defined Vehicles: State of the Art and Industry Perspectives
Marco De Vincenzi, Mert D. Pesé, Chiara Bodei, Ilaria Matteucci, Richard R. Brooks, Monowar Hasan, Andrea Saracino, Mohammad Hamad, Sebastian Steinhorst
https://arxiv.org/pdf/2411.10612
REFERENCES
[1] Mohammad Y. Abualhoul, Oyunchimeg Shagdar, and Fawzi Nashashibi. 2016. Visible Light inter-vehicle Com-
munication for platooning of autonomous vehicles. In 2016 IEEE Intelligent Vehicles Symposium (IV). 508–513.
https://doi.org/10.1109/IVS.2016.7535434
[2] Sam Abuelsamid. 2024. Stellantis Focuses On ABC As It Develops Software-Defined Vehicles. https://www.forbes.
com/sites/samabuelsamid/2024/06/13/stellantis-focuses-on-abc-as-it-develops-software-defined-vehicles/. Last
Contextualizing Security and Privacy of Software-Defined Vehicles: State of the Art and Industry Perspectives 29
accessed November 6, 2024.
[3] Accenture. 2022. Moving into the Software-Defined Vehicle Fast Lane. https://www.accenture.com/content/dam/
accenture/final/industry/mobility/document/Accenture-Software-Defined-Vehicles-pov.pdf, Last accessed November
6, 2024.
[4] ACM. 2024. ACM Digital Library. https://dl.acm.org/ Last accessed November 6, 2024.
[5] Emad Aliwa, Omer Rana, Charith Perera, and Peter Burnap. 2021. Cyberattacks and Countermeasures for In-Vehicle
Networks. ACM Comput. Surv. 54, 1, Article 21 (mar 2021), 37 pages. https://doi.org/10.1145/3431233
[6] Allstate. 2024. Drivewise - Allstate. https://www.allstate.com/drive-wise/drivewise-device.aspx.
[7] Allstate. 2024. Esurance Insurance Company. https://www.esurance.com/drivesense.
[8] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo
Cavallaro, and Konrad Rieck. 2020. Dos and Don’ts of Machine Learning in Computer Security. CoRR abs/2010.09470
(2020). arXiv:2010.09470 https://arxiv.org/abs/2010.09470
[9] Nadarajah Asokan, Thomas Nyman, Norrathep Rattanavipanon, Ahmad-Reza Sadeghi, and Gene Tsudik. 2018.
ASSURED: Architecture for secure software update of realistic embedded devices. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2290–2300.
[10] BBC. 2020. Trier: Five die as car ploughs through Germany pedestrian zone. https://www.bbc.com/news/world-europe-
55148518 Last accessed November 6, 2024.
[11] Jan Becker. 2022. A Safety-Certified Automotive SDK to Enable Software-Defined Vehicles. In Workshop Fahrerassistenz
und automatisiertes Fahren. https://www.uni-das.de/images/pdf/fas-workshop/2022/FAS2022-12-Becker.pdf
[12] Giampaolo Bella and Pietro Biondi. 2023. Car Drivers’ Privacy Awareness and Concerns. (09 2023). https://doi.org/
10.13140/RG.2.2.14411.98080
[13] Arpan Bhattacharjee, Hamza Mahmood, Sidi Lu, Nejib Ammar, Akila Ganlath, and Weisong Shi. 2023. Edge-Assisted
Over-the-Air Software Updates. In 2023 IEEE 9th International Conference on Collaboration and Internet Computing
(CIC). IEEE Computer Society, Los Alamitos, CA, USA, 18–27. https://doi.org/10.1109/CIC58953.2023.00013
[14] Tommaso Bianchi, Alessandro Brighente, Mauro Conti, and Andrea Valori. 2024. Your Car Tells Me Where You Drove:
A Novel Path Inference Attack via CAN Bus and OBD-II Data. arXiv preprint arXiv:2407.00585 (2024).
[15] David Blanco, Frédéric Le Mouël, Trista Lin, and Marie-Pierre Escudié. 2023. A Comprehensive Survey on Software
as a Service (SaaS) Transformation for the Automotive Systems. IEEE Access PP (01 2023), 1–1. https://doi.org/10.
1109/ACCESS.2023.3294256
[16] Chiara Bodei, Marco De Vincenzi, and Ilaria Matteucci. 2023. From Hardware-Functional to Software-Defined
Vehicles and their Security Issues. In 2023 IEEE 21st International Conference on Industrial Informatics (INDIN). 1–10.
https://doi.org/10.1109/INDIN51400.2023.10217971
[17] Molly Boigon. 2024. Software-defined vehicles are all the rage. Too bad they don’t exist yet. https://www.
autonews.com/mobility-report/software-defined-vehicles-will-require-supply-chain-and-revenue-strategy-shifts
https://www.autonews.com/mobility-report/software-defined-vehicles-will-require-supply-chain-and-revenue-
strategy-shifts, Last accessed November 6, 2024.
[18] Nick Bondaug-Winn. 2023. Understanding the Impact of Autonomous Vehicles on Insurance Agencies. https://
www.hbwleads.com/blog/understanding-the-impact-of-autonomous-vehicles-on-insurance-agencies/, Last accessed
November 6, 2024.
[19] Andrew Booth, Anthea Sutton, and Diana Papaioannou. 2016. Systematic Approaches to a Successful Literature Review.
SAGE Publications. https://books.google.com/books?id=JD1DCgAAQBAJ
[20] Bosch. 2023. Bosch software-defined vehicle. https://www.bosch-mobility.com/en/mobility-topics/software-defined-
vehicle/. Last accessed November 6, 2024.
[21] Christoph Bösch, Benjamin Erb, Frank Kargl, Henning Kopp, and Stefan Pfattheicher. 2016. Tales from the dark side:
Privacy dark strategies and privacy dark patterns. Proceedings on Privacy Enhancing Technologies (2016).
[22] Siham Bouchelaghem, Abdelmadjid Bouabdallah, and Mawloud Omar. 2021. Autonomous Vehicle Security: Literature
Review of Real Attack Experiments. 255–272. https://doi.org/10.1007/978-3-030-68887-5_15
[23] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang, Ruigang Yang, Qi Alfred Chen, Mingyan Liu, and
Bo Li. 2021. Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion based Perception in Autonomous
Driving Under Physical-World Attacks. In 2021 IEEE Symposium on Security and Privacy (SP). 176–194. https:
//doi.org/10.1109/SP40001.2021.00076
[24] Miller Charlie and Valasek Chris. 2015. Remote Exploitation of an Unaltered Passenger Vehicle. https://illmatics.
com/Remote%20Car%20Hacking.pdf Last accessed November 6, 2024.
[25] Abigail R Colson and Roger M Cooke. 2018. Expert elicitation: using the classical model to validate experts’ judgments.
The University of Chicago Press.
[26] Cookiebot. 2020. California Privacy Rights Act (CPRA): CCPA VS CPRA. https://www.cookiebot.com/en/cpra/ Last
accessed November 6, 2024.
30 De Vincenzi et al.
[27] Renesas Electronics Corporation. 2024. The Art of Networking Series 9: SDN - The Next Hype after Automotive Ethernet?
https://www.renesas.com/en/blogs/art-networking-series-9-sdn-next-hype-after-automotive-ethernet, Last accessed
November 6, 2024.
[28] Gianpiero Costantino, Marco De Vincenzi, and Ilaria Matteucci. 2024. A vehicle firmware security vulnerability: an
IVI exploitation. J. Comput. Virol. Hacking Tech. 20, 4 (2024), 681–696. https://doi.org/10.1007/S11416-024-00522-4
[29] Sam Curry. 2024. Hacking Kia: Remotely Controlling Cars With Just a License Plate. https://samcurry.net/hacking-kia,
Last accessed November 6, 2024.
[30] Cybersecurity and Infrastructure Security Agency (CISA). 2022. Vehicle Ramming: Security Awareness for Soft
Targets and Crowded Places. https://www.cisa.gov, Last accessed November 6, 2024.
[31] National Vulnerability Database. 2023. CVE-2023-1709: Vulnerability in [Vulnerable Product/Component]. https:
//nvd.nist.gov/vuln/detail/CVE-2023-1709 Last accessed November 6, 2024.
[32] Marco De Vincenzi, Chiara Bodei, and Ilaria Matteucci. 2023. Securing Automotive Ethernet: Design and Imple-
mentation of Security Data Link Solutions. In 2023 20th ACS/IEEE International Conference on Computer Systems and
Applications (AICCSA). 1–9. https://doi.org/10.1109/AICCSA59173.2023.10479353
[33] Marco De Vincenzi, Gianpiero Costantino, Ilaria Matteucci, Florian Fenzl, Christian Plappert, Roland Rieke, and
Daniel Zelle. 2024. A Systematic Review on Security Attacks and Countermeasures in Automotive Ethernet. ACM
Comput. Surv. 56, 6, Article 135 (Jan. 2024), 38 pages. https://doi.org/10.1145/3637059
[34] Deloitte. 2023. Software-defined Vehicles. https://www2.deloitte.com/us/en/pages/consumer-business/articles/the-
software-defined-vehicle-revolution.html. Last accessed November 6, 2024.
[35] GM Developers. 2024. GM Developers. https://developer.gm.com/in-vehicle-apps Last accessed November 6, 2024.
[36] Rinku Dewri, Prasad Annadata, Wisam Eltarjaman, and Ramakrishna Thurimella. 2013. Inferring trip destinations
from driving habits data. In Proc. of the 12th ACM workshop on Workshop on privacy in the electronic society. 267–272.
[37] Eaton. 2023. Toyota C360 Hack. https://eaton-works.com/2023/03/06/toyota-c360-hack/. Last accessed November 6,
2024.
[38] Aya El-Fatyany, Xiaohang Wang, Parasara Duggirala, Samarjit Chakraborty, Sudeep Pasricha, and Amit Singh. 2024.
Special Session: Emerging Architecture Design, Control, and Security Challenges in Software Defined Vehicles.
[39] William Enck, Damien Octeau, Patrick D McDaniel, and Swarat Chaudhuri. 2011. A study of android application
security.. In USENIX security symposium, Vol. 2.
[40] Miro Enev, Alex Takakuwa, Karl Koscher, and Tadayoshi Kohno. 2016. Automobile driver fingerprinting. Proceedings
on Privacy Enhancing Technologies (2016).
[41] European Parliament and Council of the European Union. 2016. Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).
http://data.europa.eu/eli/reg/2016/679/oj.
[42] Saad Ezzini, Ismail Berrada, and Mounir Ghogho. 2018. Who is behind the wheel? Driver identification and finger-
printing. Journal of Big Data 5, 1 (2018), 1–15.
[43] State Farm. 2018. Drive Safe & Save™ – State Farm®. https://www.statefarm.com/insurance/auto/discounts/drive-
safe-save, Last accessed November 6, 2024.
[44] Ford. 2024. Ford Developer Marketplace. https://developer.ford.com/infotainment/in-vehicle-downloadable-apps
Last accessed November 6, 2024.
[45] Mozilla Foundation. 2023. ‘Privacy Nightmare on Wheels’. https://foundation.mozilla.org/en/blog/privacy-nightmare-
on-wheels-every-car-brand-reviewed-by-mozilla-including-ford-volkswagen-and-toyota-flunks-privacy-test Last
accessed November 6, 2024.
[46] Xianyi Gao, Bernhard Firner, Shridatt Sugrim, Victor Kaiser-Pendergrast, Yulong Yang, and Janne Lindqvist. 2014.
Elastic pathing: Your speed is enough to track you. In Proceedings of the 2014 ACM international joint conference on
pervasive and ubiquitous computing. 975–986.
[47] András Gazdag, Szilvia Lestyán, Mina Remeli, Gergely Ács, Tamás Holczer, and Gergely Biczók. 2023. Privacy pitfalls
of releasing in-vehicle network data. Vehicular Communications 39 (2023), 100565.
[48] Amrita Ghosal and Mauro Conti. 2020. Security issues and challenges in V2X: A survey. Computer Networks 169
(2020), 107093.
[49] GlobeNewsWire. 2019. Daimler Partners with Otonomo to Provide Connected Car Customers with New
Services while Delivering on the Promise of Data Privacy. https://www.globenewswire.com/news-
release/2019/01/10/1685883/0/en/UPDATED-Daimler-Partners-with-Otonomo-to-Provide-Connected-Car-
Customers-with-New-Services-while-Delivering-on-the-Promise-of-Data-Privacy.html Last accessed November 6,
2024.
[50] Google Scholar. 2024. Google Scholar. https://scholar.google.com/ Last accessed November 6, 2024.
Contextualizing Security and Privacy of Software-Defined Vehicles: State of the Art and Industry Perspectives 31
[51] Colin M Gray, Yubo Kou, Bryan Battles, Joseph Hoggatt, and Austin L Toombs. 2018. The dark (patterns) side of UX
design. In Proceedings of the 2018 CHI conference on human factors in computing systems. 1–14.
[52] BMW Group. 2017. BMW Group launches BMW CarData: new and innovative services for customers, safely
and transparently. https://www.press.bmwgroup.com/global/article/detail/T0271366EN/bmw-group-launches-
bmw-cardata:-new-and-innovative-services-for-customers-safely-and-transparently?language=en Last accessed
November 6, 2024.
[53] Ujjwal Guin, Ke Huang, Daniel DiMase, John M Carulli, Mohammad Tehranipoor, and Yiorgos Makris. 2014. Counter-
feit integrated circuits: A rising threat in the global semiconductor supply chain. Proc. IEEE 102, 8 (2014), 1207–1228.
[54] Subir Halder, Amrita Ghosal, and Mauro Conti. 2020. Secure over-the-air software updates in connected vehicles: A
survey. Computer Networks 178 (2020), 107343.
[55] Mohammad Hamad and Vassilis Prevelakis. 2017. Secure APIs for Applications in Microkernel-based Systems. In
Proceedings of the 3rd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,. INSTICC,
SciTePress, 553–558. https://doi.org/10.5220/0006265805530558
[56] Mohammad Hamad and Vassilis Prevelakis. 2020. SAVTA: A hybrid vehicular threat model: Overview and case study.
Information 11, 5 (2020), 273.
[57] Mona Helmy and Mohamed Mahmoud. 2023. Enhanced Multi-Level Secure Over-the-Air Update System using
Adaptive AUTOSAR. In 2023 International Conference on Computer and Applications (ICCA). 1–4. https://doi.org/10.
1109/ICCA59364.2023.10401797
[58] Kashmir Hill. 2024. General Motors quits sharing driving behavior with data brokers. https://www.nytimes.com/
2024/03/22/technology/gm-onstar-driver-data.html
[59] Kashmir Hill. 2024. How G.M. Tricked Millions of Drivers Into Being Spied On (Including Me). N.Y. Times (April
2024). https://www.nytimes.com/2024/04/23/technology/general-motors-spying-driver-data-consent.html
[60] Honda. 2024. Honda Vehicles with Google built-in. https://automobiles.honda.com/google-built-in Last accessed
November 6, 2024.
[61] Lois Hoyal. 2024. Automakers forecast to earn tenfold more revenue from digital services. https://europe.autonews.
com/automakers/why-software-defined-vehicles-offer-big-profit-potential, Last accessed November 6, 2024.
[62] Jeremy Hsu. 2014. Toyota recalls 1.9 million prius hybrids over software flaw. IEEE Spectrum, Feb (2014).
[63] IBM. 2023. The Software Defined Vehicle - IBM Blog - Digitale Perspektive. https://www.ibm.com/blogs/digitale-
perspektive/2023/06/the-software-defined-vehicle/. Last accessed November 6, 2024.
[64] IEEEXplore. 2024. IEEE Xplore Library. https://ieeexplore.ieee.org/Xplore/home.jsp Last accessed November 6, 2024.
[65] ISO. 2021. Road vehicles — Functional safety. Standard ISO 26262:2018. International Organization for Standardization,
Geneva, CH. https://www.iso.org/standard/68383.html
[66] ISO. 2021. Road vehicles — Cybersecurity engineering. Standard ISO/SAE FDIS 21434:2021 Ed.1. International
Organization for Standardization, Geneva, CH. https://www.iso.org/standard/70918.html
[67] Japan Today. 2019. 8 injured as man rams car into pedestrians in Harajuku in ’retaliation for exe-
cution’. https://japantoday.com/category/crime/8-injured-as-man-rams-car-into-pedestrians-in-Harajuku-in-
%27retaliation-for-execution%27 Last accessed November 6, 2024.
[68] Boosun Jeon, Hongil Ju, Boheung Jung, Kyungtae Kim, and Duyeon Lee. 2019. A Study on Traffic Characteristics
for Anomaly Detection of Ethernet-based IVN. In 2019 International Conference on Information and Communication
Technology Convergence (ICTC). 951–953. https://doi.org/10.1109/ICTC46691.2019.8940022
[69] Gorkem Kar, Shubham Jain, Marco Gruteser, Jinzhu Chen, Fan Bai, and Ramesh Govindan. 2017. PredriveID: Pre-trip
driver identification from in-vehicle data. In Proc. of the Second ACM/IEEE Symposium on Edge Computing. 1–12.
[70] Kaspersky. 2024. Kaspersky survey: 71% of drivers would buy a car with less tech to protect their pri-
vacy. https://usa.kaspersky.com/about/press-releases/2024_kaspersky-survey-71-of-drivers-would-buy-a-car-
with-less-tech-to-protect-their-privacy Last accessed November 6, 2024.
[71] Pearse Keane. 2024. The Software-Defined Vehicle: Impacts Across the Automotive Ecosystem. Jabil. https://www.jabil.
com/blog/software-defined-vehicle.html, Last accessed November 6, 2024.
[72] Casper Kessels. 2024. The state of Android Automotive in 2024 - Snapp Automotive. https://www.snappautomotive.
io/blog/the-state-of-android-automotive-in-2024 Last accessed November 6, 2024.
[73] Patrick Kingsley, Euan Ward, Ronen Bergman, and Michael Levenson. 2024. Exploding Pagers Targeting Hezbollah
Kill 11 and Wound Thousands. https://www.nytimes.com/2024/09/17/world/middleeast/hezbollah-pager-explosions-
lebanon.html, Last accessed November 6, 2024.
[74] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2023. SoK: Taxonomy of Attacks on Open-Source
Software Supply Chains. In 2023 IEEE Symposium on Security and Privacy (SP). 1509–1526. https://doi.org/10.1109/
SP46215.2023.10179304
[75] Brooke Lampe and Weizhi Meng. 2023. Intrusion Detection in the Automotive Domain: A Comprehensive Review.
IEEE Communications Surveys & Tutorials 25, 4 (2023), 2356–2426. https://doi.org/10.1109/COMST.2023.3309864
32 De Vincenzi et al.
[76] Aljoscha Lautenbach, Magnus Almgren, and Tomas Olovsson. 2021. Proposing HEAVENS 2.0–an automotive risk
assessment model. In Proceedings of the 5th ACM Computer Science in Cars Symposium. 1–12.
[77] Van Huynh Le, Jerry den Hartog, and Nicola Zannone. 2018. Security and privacy for innovative automotive
applications: A survey. Computer Communications 132 (2018), 17–41. https://doi.org/10.1016/j.comcom.2018.09.010
[78] Namcheol Lee, Seongsoo Hong, and Saehwa Kim. 2024. Dynamic Mapping of Mixed-Criticality Applications onto
a Mixed-Criticality Runtime System with Probabilistic Guarantees. In 2024 IEEE 44th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 1466–1467.
[79] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. 2007. t-Closeness: Privacy Beyond k-Anonymity and
l-Diversity. In 2007 IEEE 23rd International Conference on Data Engineering. 106–115. https://doi.org/10.1109/ICDE.
2007.367856
[80] Zongwei Liu, Wang Zhang, and Fuquan Zhao. 2018. Security and privacy for innovative automotive applications: A
survey. Computer Communications 5 (2018), 17–41. https://doi.org/10.1016/j.comcom.2018.09.010
[81] Zongwei Liu, Wang Zhang, and Fuquan Zhao. 2022. Impact, Challenges and Prospect of Software-Defined Vehicles.
Automotive Innovation 5, 2 (01 Apr 2022), 180–194. https://doi.org/10.1007/s42154-022-00179-z
[82] Zongwei Liu, Wang Zhang, and Fuquan Zhao. 2022. Impact, Challenges and Prospect of Software-Defined Vehicles.
Automotive Innovation 5 (2022), 180–194. https://doi.org/10.1007/s42154-022-00179-z
[83] Garikayi Madzudzo and Madeline Cheah. 2020. Data Protection and Connected Vehicles: Privacy Policy Analysis
from a Consumer Perspective. (November 2020). https://doi.org/10.13140/RG.2.2.28097.17769
[84] Asad Waqar Malik, Anis U. Rahman, Arsalan Ahmad, and Max Mauro Dias Santos. 2022. Over-the-Air Software-
Defined Vehicle Updates Using Federated Fog Environment. IEEE Transactions on Network and Service Management
19, 4 (2022), 5078–5089. https://doi.org/10.1109/TNSM.2022.3181027
[85] Stefan F Marksteiner, Christoph Schmittner, Korbinian Christl, Dejan Nickovic, Mikael Sjödin, and Marjan Sirjani. 2023.
From TARA to Test: Automated Automotive Cybersecurity Test Generation Out of Threat Modeling. In Proceedings
of the 7th ACM Computer Science in Cars Symposium (Darmstadt, Germany) (CSCS ’23). Association for Computing
Machinery, New York, NY, USA, Article 5, 10 pages. https://doi.org/10.1145/3631204.3631864
[86] Stefan F Marksteiner, Christoph Schmittner, Korbinian Christl, Dejan Nickovic, Mikael Sjödin, and Marjan Sirjani. 2023.
From TARA to Test: Automated Automotive Cybersecurity Test Generation Out of Threat Modeling. In Proceedings
of the 7th ACM Computer Science in Cars Symposium (Darmstadt, Germany) (CSCS ’23). Association for Computing
Machinery, New York, NY, USA, Article 5, 10 pages. https://doi.org/10.1145/3631204.3631864
[87] Matt McFarland, CNN business. 2022. Teen’s Tesla hack shows how vulnerable third-party apps may make cars.
https://www.cnn.com/2022/02/02/cars/tesla-teen-hack/index.html. Last accessed November 6, 2024.
[88] Rani Molla. 2024. How to opt out of the privacy nightmare that comes with new Hondas. Sherwood News (May 2024).
https://sherwood.news/tech/how-to-opt-out-of-the-privacy-nightmare-that-comes-factory-installed-in-new
[89] Jean-Philippe Monteuuis, Aymen Boudguiga, Jun Zhang, Houda Labiod, Alain Servel, and Pascal Urien. 2018. Sara:
Security automotive risk analysis method. In Proc. of the 4th ACM Workshop on Cyber-Physical System Security. 3–14.
[90] Lama J. Moukahal, Mohammad Zulkernine, and Martin Soukup. 2021. Towards a Secure Software Lifecycle for
Autonomous Vehicles. In 2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW).
371–377. https://doi.org/10.1109/ISSREW53611.2021.00104
[91] Lama J. Moukahal, Mohammad Zulkernine, and Martin Soukup. 2021. Towards a Secure Software Lifecycle for
Autonomous Vehicles. In 2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW).
371–377. https://doi.org/10.1109/ISSREW53611.2021.00104
[92] National Highway Traffic Safety Administration (NHTSA). 2023. Automated Vehicles for Safety | NHTSA. https:
//www.nhtsa.gov/vehicle-safety/automated-vehicles-safety. Last accessed November 6, 2024.
[93] Boel Nelson and Tomas Olovsson. 2017. Introducing Differential Privacy to the Automotive Domain: Opportunities
and Challenges. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). 1–7. https://doi.org/10.1109/VTCFall.
2017.8288389
[94] Boel Nelson and Tomas Olovsson. 2017. Introducing differential privacy to the automotive domain: Opportunities
and challenges. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). IEEE, 1–7.
[95] Governor of California. 2018. Basics of the California Consumer Privacy Act of 2018. https://www.privacypolicies.
com/blog/california-consumer-privacy-act/.
[96] Dennis Kengo Oka. 2021. Building secure cars: assuring the automotive software development lifecycle. John Wiley &
Sons.
[97] Akash Pallath and Qiyang Zhang. 2023. Paperfetcher: A tool to automate handsearching and citation searching for
systematic reviews. Res. Synth. Methods 14, 2 (March 2023), 323–335. https://doi.org/10.1002/jrsm.1604
[98] Fengjunjie Pan, Jianjie Lin, Markus Rickert, and Alois Knoll. 2022. Resource Allocation in Software-Defined Vehicles:
ILP Model Formulation and Solver Evaluation. In 2022 IEEE 25th International Conference on Intelligent Transportation
Systems (ITSC). 2577–2584. https://doi.org/10.1109/ITSC55140.2022.9922526
Contextualizing Security and Privacy of Software-Defined Vehicles: State of the Art and Industry Perspectives 33
[99] Mert D Pese. 2023. A first look at android automotive privacy. Technical Report. SAE Technical Paper.
[100] Mert D Pesé, Xiaoying Pu, and Kang G Shin. 2020. Spy: Car steering reveals your trip route! Proceedings on Privacy
Enhancing Technologies (2020).
[101] Mert D Pesé, Jay W Schauer, Murali Mohan, Cassandra Joseph, Kang G Shin, and John Moore. 2023. PRICAR: Privacy
Framework for Vehicular Data Sharing with Third Parties. In 2023 IEEE Secure Development Conference (SecDev). IEEE,
184–195.
[102] Mert D Pesé and Kang G Shin. 2019. Survey of automotive privacy regulations and privacy-related attacks. (2019).
[103] Christian Plappert, Florian Fenzl, Roland Rieke, Ilaria Matteucci, Gianpiero Costantino, and Marco De Vincenzi. 2022.
SECPAT: Security Patterns for Resilient Automotive E / E Architectures. In 2022 30th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP). 255–264. https://doi.org/10.1109/PDP55904.2022.00047
[104] Christian Plappert, Daniel Zelle, Christoph Krauß, Benjamin Lange, Sebastian Mauthofer, Jonas Walter, Bettina
Abendroth, Rasmus Robrahn, Thilo von Pape, and Hendrik Decke. 2023. A privacy-aware data access system for
automotive applications. (2023).
[105] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and Giovanni Vigna. 2014. Execute
this! Analyzing unsafe and malicious dynamic code loading in android applications. In NDSS, Vol. 14. 23–26.
[106] Vassilis Prevelakis and Mohammad Hamad. 2015. A policy-based communications architecture for vehicles. In 2015
International Conference on Information Systems Security and Privacy (ICISSP). IEEE, 155–162.
[107] Progressive. 2024. What is Snapshot and How You Can Save. https://www.progressive.com/auto/discounts/snapshot/.
[108] Shatad Purohit, Ayesha Madni, Arun Adiththan, and Azad M. Madni. 2023. Digital Twin Integration for Software
Defined Vehicles: Decoupling Hardware and Software in Automotive System Development. In 2023 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). 1259–1264. https://doi.org/10.1109/SMC53992.2023.10394507
[109] Sampath Rajapaksha, Harsha Kalutarage, M. Omar Al-Kadri, Andrei Petrovski, Garikayi Madzudzo, and Madeline
Cheah. 2023. AI-Based Intrusion Detection Systems for In-Vehicle Networks: A Survey. ACM Comput. Surv. 55, 11,
Article 237 (Feb. 2023), 40 pages. https://doi.org/10.1145/3570954
[110] Research Gate. 2024. Research Gate. https://www.researchgate.net/ Last accessed November 6, 2024.
[111] Caleb Riggs, Carl-Edwin Rigaud, Robert Beard, Tanner Douglas, and Karim Elish. 2018. A Survey on Connected
Vehicles Vulnerabilities and Countermeasures. Journal of Traffic and Logistics Engineering (01 2018), 11–16. https:
//doi.org/10.18178/jtle.6.1.11-16
[112] Marcel Rumez, Daniel Grimm, Reiner Kriesten, and Eric Sax. 2020. An overview of automotive service-oriented
architectures and implications for security countermeasures. IEEE access 8 (2020), 221852–221870.
[113] Lu S., Ammar N., Ganlath A., Wang H., and Shi W. 2022. A Comparison of End-to-End Architectures for Connected
Vehicles. In Proceedings - 2022 5th International Conference on Connected and Autonomous Driving, MetroCAD 2022.
SOAFEE, 72–80. https://doi.org/10.1109/MetroCAD56305.2022.00015
[114] Etienne Sapin, Suraj Menon, Jingquan Ge, Sheikh Mahbub Habib, Maurice Heymann, Yuekang Li, Rene Palige, Gabriel
Byman, and Yang Liu. 2023. Monitoring Automotive Software Security Health through Trustworthiness Score. In
Proceedings of the 7th ACM Computer Science in Cars Symposium (Darmstadt, Germany) (CSCS ’23). Association for
Computing Machinery, New York, NY, USA, Article 1, 9 pages. https://doi.org/10.1145/3631204.3631859
[115] Ankur Sarker, Haiying Shen, Chenxi Qiu, Hua Uehara, and Kevin Zhang. 2023. Brake-Signal-Based Driver’s Location
Tracking in Usage-Based Auto Insurance Programs. IEEE Internet of Things Journal 10, 12 (2023), 10172–10189.
[116] Satori. 2022. Data Anonymization: Use Cases and 6 common techniques. https://satoricyber.com/data-masking/data-
anonymization-use-cases-and-6-common-techniques/ Last accessed November 6, 2024.
[117] Science Direct. 2024. Science Direct Library. https://www.sciencedirect.com/ Last accessed November 6, 2024.
[118] Upstream Security. 2024. Global Automotive Cybersecurity Report. https://upstream.auto/reports/global-automotive-
cybersecurity-report/. Last accessed November 6, 2024.
[119] Eunbi Seo, Hyun Min Song, and Huy Kang Kim. 2018. GIDS: GAN based Intrusion Detection System for In-Vehicle
Network. In 2018 16th Annual Conference on Privacy, Security and Trust (PST). 1–6. https://doi.org/10.1109/PST.2018.
8514157
[120] Girish Shirasat and Stefano Marzani. 2024. Accelerating software-defined vehicles through cloud-to-vehicle edge
environmental parity. In aws for automotive. SOAFEE. https://doi.org/developer/Files/pdf/white-paper/arm-aws-
edge-environmental-parity-wp.pdf Last accessed November 6, 2024.
[121] Dirk Slama, Achim Nonnenmacher, and Thomas Irawan. 2023. The Software-Defined Vehicle: A Digital-
First Approach to Creating Next-Generation Experiences. O’Reilly. https://www.digital.auto/_files/ugd/87c677_
1851f6f1af6a4752a3c038038e70f222.pdf Last accessed November 6, 2024.
[122] Suzanne Smalley. 2024. Insurer unveils policy covering drivers from connected car hacks and data leaks. https:
//therecord.media/insurer-introduces-policy-covering-drivers-from-connected-car-hacks, Last accessed November 6,
2024.
34 De Vincenzi et al.
[123] Fedor Smirnov, Felix Reimann, Jürgen Teich, and Michael Glaß. 2018. Automatic Optimization of the VLAN Partitioning
in Automotive Communication Networks. ACM Trans. Des. Autom. Electron. Syst. 24, 1, Article 9 (Dec. 2018), 23 pages.
https://doi.org/10.1145/3278120
[124] Ian Smith. 2024. Insurance groups urge state support for ‘uninsurable’ cyber risks. Financial Times (sep 2024).
https://www.ft.com/content/c2769c6d-8bec-4167-af5c-53c6cf139851, Last accessed November 6, 2024.
[125] Jama Software. 2023. Software Defined Vehicles: Revolutionizing the Future of Transportation. White Pa-
per. Jama. https://www.jamasoftware.com/whitepaper/software-defined-vehicles-revolutionizing-the-future-of-
transportation-whitepaper Last accessed November 6, 2024.
[126] Springer Link. 2024. Springer Link Library. https://link.springer.com/ Last accessed November 6, 2024.
[127] Marco Steger, Ali Dorri, Salil S. Kanhere, Kay Römer, Raja Jurdak, and Michael Karner. 2018. Secure Wireless
Automotive Software Updates Using Blockchains: A Proof of Concept. In Advanced Microsystems for Automotive
Applications 2017, Carolin Zachäus, Beate Müller, and Gereon Meyer (Eds.). Springer International Publishing, Cham,
137–149.
[128] Latanya Sweeney. 2002. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst.
10, 5 (Oct. 2002), 557–570. https://doi.org/10.1142/S0218488502001648
[129] Kuppusamy T. Karthik and D. McCoy. 2016. Uptane: Securing Software Updates for Automobiles. Presented at the
ESCARE Europe, 2016.
[130] Pedro Veloso Teixeira, Duarte Raposo, Rui Lopes, and Susana Sargento. 2024. Software Defined Vehicles for Develop-
ment of Deterministic Services. arXiv:2407.17287 [cs.DC] https://arxiv.org/abs/2407.17287
[131] Tencent Keen Security Lab. 2018. New Vehicle Security Research by KeenLab: Experimental Security Assessment of BMW
Cars. https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-
Assessment-of-BMW-Cars/, Last accessed November 6, 2024.
[132] The Guardian. 2023. Nine injured in Tel Aviv ramming and stabbing attack. https://www.theguardian.com/world/
2023/jul/04/seven-injured-in-tel-aviv-ramming-and-stabbing-attack Last accessed November 6, 2024.
[133] Towards Automotive. 2024. Software Defined Vehicles Market Size, Share, Analysis. https://www.towardsautomotive.
com/insights/software-defined-vehicles-market-sizing. Last accessed November 6, 2024.
[134] UNECE. 2021. Uniform provisions concerning the approval of vehicles with regards to software update and software updates
management system. Regulation Addendum 155 – UN Regulation No. 156. United Nations Economic Commission for
Europe, Geneva, CH. https://unece.org/sites/default/files/2021-03/R156e.pdf
[135] UNECE. 2021. Uniform provisions concerning the approval of vehicles with regards to cyber security and cyber security
management system. Regulation Addendum 154 – UN Regulation No. 155. United Nations Economic Commission for
Europe, Geneva, CH. https://unece.org/sites/default/files/2021-03/R155e.pdf
[136] U.S. Department of Transportation. 2020. How Connected Vehicles Work. https://www.transportation.gov/research-
and-technology/how-connected-vehicles-work. Last accessed November 6, 2024.
[137] Sherin Kalli Valappil, Lars Vogel, Mohammad Hamad, and Sebastian Steinhorst. 2024. Advanced IDPS Architecture
for Connected and Autonomous Vehicles. In 2024 IEEE Intelligent Vehicles Symposium (IV). 1779–1785. https:
//doi.org/10.1109/IV55156.2024.10588659
[138] Volvo. 2024. Discover Volvo with Google Assistant, Google Maps and Google Play built in |Volvo Cars. https:
//www.volvocars.com/intl/v/connectivity/infotainment-page Last accessed November 6, 2024.
[139] Marian Waltereit, Maximilian Uphoff, and Torben Weis. 2019. Route derivation using distances and turn directions.
In Proceedings of the ACM Workshop on Automotive Cybersecurity. 35–40.
[140] Bo Wang, Smruti Panigrahi, Mayur Narsude, and Amit Mohanty. 2017. Driver identification using vehicle telematics
data. Technical Report. SAE Technical Paper.
[141] Bao-Fu Wu, Ren Zhong, Yuxin Wang, Jian Wan, Ji-Lin Zhang, and Weisong Shi. 2024. Vpi: Vehicle programming
interface for vehicle computing. Journal of Computer Science and Technology 39, 1 (2024), 22–44.
[142] Oded Yarkoni. 2024. What Does the GDPR Have to Do with Car OEMs? https://upstream.auto/blog/gdpr/, Last
accessed November 6, 2024.
[143] Sadia Yeasmin and Anwar Haque. 2021. A Multi-Factor Authenticated Blockchain-Based OTA Update Framework
for Connected Autonomous Vehicles. In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). 1–6. https:
//doi.org/10.1109/VTC2021-Fall52928.2021.9625372
[144] Longhai Yu, Xudong Bian, Yuqiao Ning, and Zhen Guo. 2023. Software Security Analysis for Automotive Intelligent
Cockpits. IOS Press. https://doi.org/10.3233/ATDE230577
[145] Fuquan Zhao, Haokun Song, and Zongwei Liu. 2022. Identification and Analysis of Key Technical Elements and
Prospects for Software-Defined Vehicles. In SAE 2021 Intelligent and Connected Vehicles Symposium (ICVS 2021). SAE
Technical papers. https://doi.org/10.4271/2022-01-7002
[146] Jingyuan Zhao, Wenyi Zhao, Bo Deng, Zhenghong Wang, Feng Zhang, Wenxiang Zheng, Wanke Cao, Jinrui Nan,
Yubo Lian, and Andrew F. Burke. 2024. Autonomous driving system: A comprehensive survey. Expert Systems with
Contextualizing Security and Privacy of Software-Defined Vehicles: State of the Art and Industry Perspectives 35
Applications 242 (2024), 122836. https://doi.org/10.1016/j.eswa.2023.122836
[147] Rui Zhao, Guihe Qin, Ying Lyu, and Jie Yan. 2019. Security-Aware Scheduling for TTEthernet-Based Real-Time
Automotive Systems. IEEE Access 7 (2019), 85971–85984. https://doi.org/10.1109/ACCESS.2019.2926113
[148] Lu Zhou, Qingrong Chen, Zutian Luo, Haojin Zhu, and Cailian Chen. 2017. Speed-based location tracking in usage-
based automotive insurance. In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2252–2257.
[149] Lu Zhou, Suguo Du, Haojin Zhu, Cailian Chen, Kaoru Ota, and Mianxiong Dong. 2018. Location privacy in usage-based
automotive insurance: Attacks and countermeasures. IEEE Transactions on Information Forensics and Security 14, 1
(2018), 196-211
7 Experimental Validation of User Experience-focused Dynamic Onboard Service Orchestration for Software Defined Vehicles
Pierre Laclau, Stéphane Bonnet, Bertrand Ducourthial, Trista Lin, Xiaoting Li
REFERENCES
[1] C. Buckl, A. Camek, G. Kainz, C. Simon, L. Mercep, H. St¨ ahle, and
Knoll, “The Software Car: Building ICT Architectures for Future Elec-
tric Vehicles,” in 2012 IEEE International Electric Vehicle Conference.
[2] H. Askaripoor, M. Hashemi Farzaneh, and A. Knoll, “E/E Architecture
Synthesis: Challenges and Technologies,” Electronics, 2022.
[3] S. Jiang, “Vehicle E/E Architecture and Key Technologies Enabling
Software-Defined Vehicle,” SAE International, Warrendale, PA, SAE
Technical Paper 2024-01-2035, 2024, iSSN: 0148-7191, 2688-3627.
[4] N. Ayres, L. Deka, and D. Paluszczyszyn, “Continuous Automotive
Software Updates through Container Image Layers,” Electronicsweek,
2021, publisher: Multidisciplinary Digital Publishing Institute.
[5] P. Laclau, S. Bonnet, B. Ducourthial, X. Li, and T. Lin, “Predic-
tive Network Configuration with Hierarchical Spectral Clustering for
Software Defined Vehicles,” in 2023 IEEE 97th Vehicular Technology
Conference (VTC2023-Spring), 2023, pp. 1–5, iSSN: 2577-2465.
[6] M. Schindewolf, H. Stoll, H. Guissouma, A. Puder, E. Sax, A. Vetter,
M. Rumez, and J. Henle, “A Comparison of Architecture Paradigms
for Dynamic Reconfıgurable Automotive Networks,” in 2022 Interna-
tional Conference on Connected Vehicle and Expo (ICCVE).
[7] M. Haeberle, F. Heimgaertner, H. Loehr, N. Nayak, D. Grewe,
S. Schildt, and M. Menth, “Softwarization of Automotive E/E Archi-
tectures: A Software-Defined Networking Approach,” in 2020 IEEE
Vehicular Networking Conference (VNC), 2020.
[8] V. Bandur, G. Selim, V. Pantelic, and M. Lawford, “Making the Case
for Centralized Automotive E/E Architectures,” IEEE Transactions on
Vehicular Technology, vol. PP, pp. 1–1, 2021.
[9] T. H¨ ackel, P. Meyer, F. Korf, and T. C. Schmidt, “Secure Time-
Sensitive Software-Defined Networking in Vehicles,” IEEE Transac-
tions on Vehicular Technology, vol. 72, no. 1, pp. 35–51, 2022.
[10] K. Taylor, “Digital cockpit in the era of the software-defined vehicle,”
SAE International, Warrendale, PA, SAE Technical Paper 2024-01-
2391, 2024, iSSN: 0148-7191, 2688-3627.
[11] P. Laclau, S. Bonnet, B. Ducourthial, X. Li, and T. Lin, “Enhancing
Automotive User Experience with Dynamic Service Orchestration for
Software Defined Vehicles,” 2024, preprint, submitted to IEEE ITS,
under revision. [Online]. Available: https://hal.science/hal-04505345
[12] A. Frigerio, B. Vermeulen, and K. Goossens, “Component-Level
ASIL Decomposition for Automotive Architectures,” in 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), 2019, pp. 62–69.
[13] S. Kugele, P. Obergfell, M. Broy, O. Creighton, M. Traub, and
W. Hopfensitz, “On Service-Orientation for Automotive Software,” in
2017 IEEE International Conference on Software Architecture (ICSA).
[14] J. Frtunikj, M. Armbruster, and A. Knoll, “Run-Time Adaptive Error
and State Management for Open Automotive Systems,” in 2014
IEEE International Symposium on Software Reliability Engineering
Workshops.
[15] X. Liao, Z. Wang, X. Zhao, K. Han, P. Tiwari, M. J. Barth, and G. Wu,
“Cooperative Ramp Merging Design and Field Implementation: A
Digital Twin Approach Based on Vehicle-to-Cloud Communication,”
IEEE Transactions on Intelligent Transportation Systems, 2022.
[16] T. H¨ ackel, P. Meyer, L. Stahlbock, F. Langer, S. A. Eckhardt,
F. Korf, and T. C. Schmidt, “A Multilayered Security Infrastruc-
ture for Connected Vehicles – First Lessons from the Field,” 2023,
arXiv:2310.10336 [cs].
[17] B. Shi, X. Tu, B. Wu, and Y. Peng, “Recent Advances in Time-
Sensitive Network Configuration Management: A Literature Review,”
Journal of Sensor and Actuator Networks, vol. 12, no. 4, p. 52, 2023.
[18] K. Halba, C. Mahmoudi, and E. Griffor, “Robust Safety for Au-
tonomous Vehicles through Reconfigurable Networking,” Electronic
Proceedings in Theoretical Computer Science, vol. 269, 2018.
[19] T. Hackel, P. Meyer, F. Korf, and T. C. Schmidt, “Software-Defined
Networks Supporting Time-Sensitive In-Vehicular Communication,” in
2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring),
2019, iSSN: 2577-2465.
[20] A. Kampmann, B. Alrifaee, M. Kohout, A. Wustenberg, T. Woopen,
M. Nolte, L. Eckstein, and S. Kowalewski, “A Dynamic Service-
Oriented Software Architecture for Highly Automated Vehicles,” in
2019 IEEE Intelligent Transportation Systems Conference (ITSC).
Auckland, New Zealand: IEEE, 2019, pp. 2101–2108.
[21] E. Truyen, D. Van Landuyt, D. Preuveneers, B. Lagaisse, and
W. Joosen, “A Comprehensive Feature Comparison Study of Open-
Source Container Orchestration Frameworks,” Applied Sciences, 2019.
[22] Y. Peng, B. Shi, T. Jiang, X. Tu, D. Xu, and K. Hua, “A Survey on In-
Vehicle Time-Sensitive Networking,” IEEE Internet of Things Journal,
vol. 10, no. 16, pp. 14 375–14 396, 2023.
[23] D. F. K¨ ulzer, S. Sta´ nczak, and M. Botsov, “Novel QoS Control
Framework for Automotive Safety-Related and Infotainment Services,”
in 2020 IEEE Wireless Communications and Networking Conference
(WCNC), 2020, pp. 1–7, iSSN: 1558-2612.
[24] D. Fern´ andez Blanco, F. Le Mou¨ el, T. Lin, and A. Rekik, “Can
Software Containerisation Fit The Car On-Board Systems ?” 2023.
[Online]. Available: https://hal.science/hal-04127629
[25] N. Nayak, D. Grewe, and S. Schildt, “Automotive Container Orches-
tration: Requirements, Challenges and Open Directions,” in 2023 IEEE
Vehicular Networking Conference (VNC), 2023, pp. 61–64.
8 Runtime Verification Containers for Publish/Subscribe Networks
Ali Mehran, Dogan Ulus
https://arxiv.org/pdf/2408.06380
References
[1] Houssam Abbas et al. “Special session: Embedded software for robotics: Challenges and future directions”. In: 2018 International Conference on Embedded Software (EMSOFT). IEEE. 2018, pp. 1–10.
[2] Sorin Adam et al. “Towards rule-based dynamic safety monitoring for mobile robots”. In: Simulation, Modeling, and Programming for Autonomous Robots: 4th International Conference, SIMPAR 2014, Bergamo, Italy, October 20-23, 2014. Proceedings 4. Springer. 2014, pp. 207–218.
[3] Ouafa Bentaleb et al. “Containerization technologies: Taxonomies, applications and challenges”. In: The Journal of Supercomputing 78.1 (2022),pp. 1144–1181.
[4] Tobias Betz et al. “A Containerized Microservice Architecture for a ROS 2 Autonomous Driving Software: An End-to-End Latency Evaluation”. In:arXiv preprint arXiv:2404.12683 (2024).
[5] Ricardo Caldas et al. “Runtime Verification and Field Testing for ROS-Based Robotic Systems”. In: arXiv preprint arXiv:2404.11498 (2024).
[6] Joris Claassen, Ralph Koning, and Paola Grosso. “Linux containers networking: Performance and scalability of kernel modules”. In: NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium.IEEE. 2016, pp. 713–717.
[7] Viraj Dawarka and Girish Bekaroo. “Building and evaluating cloud robotic systems:Asystematicreview”.In:Robotics and Computer-Integrated Manufacturing 73 (2022), p. 102240.
[8] Angelo Ferrando et al. “ROSMonitoring: a runtime verification framework for ROS”. In: Towards Autonomous Robotic Systems: 21st Annual Con- ference, TAROS 2020, Nottingham, UK, September 16, 2020, Proceedings 21. Springer. 2020, pp. 387–399.
[9] Jeff Huang et al. “ROSRV: Runtime verification for robots”. In: Runtime Verification: 5th International Conference, RV 2014, Toronto, ON, Runtime Verification Containers for Publish/Subscribe Networks Canada, September 22-25, 2014. Proceedings 5. Springer. 2014, pp. 247–254.
[10] Zhanibek Kozhirbayev and Richard O Sinnott. “A performance comparison of container-based technologies for the cloud”. In: Future Generation Computer Systems 68 (2017), pp. 175–182.
[11] Wen-Yew Liang, Yuyuan Yuan, and Hsiang-Jui Lin. “A performance study on the throughput and latency of Zenoh, MQTT, Kafka, and DDS”. In: arXiv preprint arXiv:2303.09419 (2023).
[12] Francesco Lumpp et al. “A container-based design methodology for robotic applications on kubernetes edge-cloud architectures”. In: 2021 Forum on specification & Design Languages (FDL). IEEE. 2021, pp. 01–08.
[13] Francesco Lumpp et al. “Enabling Kubernetes Orchestration of Mixed-Criticality Software for Autonomous Mobile Robots”. In: IEEE Transac- tions on Robotics (2023).
[14] Dirk Merkel et al. “Docker: lightweight linux containers for consistent de- velopment and deployment”. In: Linux j 239.2 (2014), p. 2.
[15] Ivan Perez et al. “Monitoring ROS2: from requirements to autonomous robots”. In: arXiv preprint arXiv:2209.14030 (2022).
[16] Marco Stadler and Michael Vierhauser. “ROMoSu: Flexible Runtime Monitoring Support for ROS-based Applications”. In: 2023 IEEE/ACM 5th International Workshop on Robotics Software Engineering (RoSE). IEEE. 2023, pp. 53–60.
[17] Dogan Ulus. “Online monitoring of metric temporal logic using sequential networks”. In: arXiv preprint arXiv:1901.00175 (2019).
[18] Dogan Ulus. “Timescales: A benchmark generator for MTL monitoring tools”. In: Proceedings of the Conference on Runtime Verification (RV). Springer. 2019, pp. 402–412.
[19] Long Wen et al. “Bare-Metal vs. Hypervisors and Containers: Performance Evaluation of Virtualization Technologies for Software-Defined Vehicles”. In: 2023 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2023, pp. 1–8.
[20] Chongkun Xia et al. “Microservice-based cloud robotics system for intelligent space”. In: Robotics and Autonomous Systems 110 (2018), pp. 139–150.
[21] TomoyaYamaguchi,BardhHoxha,andDejanNičković.“RTAMT–Runtime Robustness Monitors with Application to CPS and Robotics”. In: International Journal on Software Tools for Technology Transfer 26.1 (2024), pp. 79–99.
9 Automatic Platform Configuration and Software Integration for Software-Defined Vehicles
Fengjunjie Pan, Jianjie Lin, Markus Rickert
https://arxiv.org/pdf/2408.02127
REFERENCES
[1] A. Tosatto, P. Ruiu, and A. Attanasio, “Container-based orchestration
in cloud: State of the art and challenges,” in 2015 Ninth International
Conference on Complex, Intelligent, and Software Intensive Systems,
2015, pp. 70–75.
[2] D. Beimborn and M. Palitza, “Enterprise app stores for mobile appli-
cations: Development of a benefits framework,” 19th Americas Confer-
ence on Information Systems, AMCIS 2013 - Hyperconnected World:
Anything, Anywhere, Anytime, vol. 2, pp. 1393–1403, 01 2013.
[3] T. Chowdhury, E. Lesiuta, K. Rikley, C.-W. Lin, E. Kang, B. Kim,
S. Shiraishi, M. Lawford, and A. Wassyng, “Safe and secure automotive
over-the-air updates,” 09 2018, pp. 172–187.
[4] F. Pan, J. Lin, M. Rickert, and A. Knoll, “Automated design space
exploration for resource allocation in software-defined vehicles,” in 2023
IEEE Intelligent Vehicles Symposium (IV), 2023, pp. 1–8.
[5] Y. Brikman, Terraform: Up and Running. ” O’Reilly Media, Inc.”,
2022.
[6] B. Burns, J. Beda, and K. Hightower, Kubernetes. Dpunkt Heidelberg,
Germany, 2018.
[7] M. Masse, REST API design rulebook. ” O’Reilly Media, Inc.”, 2011.
[8] “Wl-10,” https://www.maxtangpc.com/industrialmotherboards/142.html,
accessed: 2022-12-21.
[9] “A big little hypervisor for iot development,” https://projectacrn.org/,
accessed: 2022-12-21.
[10] Rancher, “Lightweight kubernetes,” https://k3s.io/, accessed: 2024-02-
19.
[11] OBEO, “Generate anything from any emf model,” https://eclipse.dev/
acceleo/, accessed: 2024-03-25.
[12] S. Dziwok, C. Gerking, S. Becker, S. Thiele, C. Heinzemann, and
U. Pohlmann, “A tool suite for the model-driven software engineering
of cyber-physical systems,” in Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2014,
pp. 715–718.
[13] R. H¨ ottger, H. Mackamul, A. Sailer, J.-P. Stegh¨ ofer, and J. Tessmer,
“App4mc: Application platform project for multi-and many-core sys-
tems,” it-Information Technology, vol. 59, no. 5, pp. 243–251, 2017.
[14] V. Aravantinos, S. Voss, S. Teufl, F. H¨ olzl, and B. Sch¨ atz, “Autofocus 3:
Tooling concepts for seamless, model-based development of embedded
systems.” ACES-MB&WUCOR@ MoDELS, vol. 1508, pp. 19–26, 2015.
[15] “Flatpak documentation,” https://docs.flatpak.org/, accessed: 2024-07-
25.
[16] J. Nickoloff and S. Kuenzli, Docker in action. Simon and Schuster,
2019.
[17] M. Spencer, “How the soafee architecture brings a cloud-native approach
to mixed critical automotive systems,” 2021.
[18] L. Wen, M. Rickert, F. Pan, J. Lin, and A. Knoll, “Bare-metal vs.
hypervisors and containers: Performance evaluation of virtualization
technologies for software-defined vehicles,” in 2023 IEEE Intelligent
Vehicles Symposium (IV), 2023, pp. 1–8.
[19] A. Desai, R. Oza, P. Sharma, and B. Patel, “Hypervisor: A survey on
concepts and taxonomy,” International Journal of Innovative Technology
and Exploring Engineering, vol. 2, no. 3, pp. 222–225, 2013.
[20] H. Li, X. Xu, J. Ren, and Y. Dong, “Acrn: a big little hypervisor for
iot development,” in Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2019, pp.
31–44.
[21] J. Turnbull, The Docker Book: Containerization is the new virtualization.
James Turnbull, 2014.
[22] B. Burns, J. Beda, K. Hightower, and L. Evenson, Kubernetes: up and
running. ” O’Reilly Media, Inc.”, 2022.
[23] Eclipse, “Eclipse jersey,” https://eclipse-ee4j.github.io/jersey/, accessed:
2024-02-19.
[24] Rancher, “K3s architecture,” https://docs.k3s.io/architecture/, accessed:
2024-02-19.
[25] Intel, “Intel distribution of openvino toolkit,” https://www.intel.com/
content/www/us/en/developer/tools/openvino-toolkit/overview.html, ac-
cessed: 2022-09-01.
[26] “Ros - robot operationg system,,” https://www.ros.org/, accessed: 2022-
09-01.
[27] “Open container initiative,,” https://opencontainers.org/, accessed: 2022-
09-01.
10 Deterministic and Reliable Software-Defined Vehicles: key building blocks, challenges, and vision
Pedro Veloso Teixeira, Duarte Raposo, Rui Lopes, Susana Sargento
https://arxiv.org/pdf/2407.17287
References
[1] Renault Group, H1stvision, the concept car designed by software
r
´ epublique: a human-centred vision of mobility for tomorrow - renault
group global media website, (Accessed on 07/01/2023) (Jun. 2023).
URL https://media.renaultgroup.com/h1st-vision-the-
concept-car-designed-by-software-republique-a-human-
centred-vision-of-mobility-for-tomorrow/
[2] M. Ashjaei, L. L. Bello, M. Daneshtalab, G. Patti, S. Saponara,
S. Mubeen, Time-sensitive networking in automotive embedded sys-
tems: State of the art and research opportunities, Journal of Systems Ar-
chitecture 117 (2021) 102137. doi:10.1016/j.sysarc.2021.102137.
URL https://www.sciencedirect.com/science/article/pii/
S1383762121001028
[3] B. B. Gordan Markus, A CTO’s Guide to software-defined vehicles,
Canonical (June 2022).
URL https://pages.ubuntu.com/rs/066-EOV-335/images/
SDV WP Final 27062022.pdf
[4] C. Buckl, A. Camek, G. Kainz, C. Simon, L. Mercep, H. St¨ ahle,
A. Knoll, The software car: Building ICT architectures for future elec-
tric vehicles, in: 2012 IEEE International Electric Vehicle Conference,
2012, pp. 1–8. doi:10.1109/IEVC.2012.6183198.
[5] R. N. Charette, How Software Is Eating the Car - IEEE Spectrum, (Ac-
cessed on 04/28/2023) (Jun. 2021).
URL https://spectrum.ieee.org/software-eating-car
[6] Vector, AUTOSAR essentials — #engineeringthejigsaw — episode f6 -
youtube, (Accessed on 07/01/2023) (Aug. 2021).
URL https://www.youtube.com/watch?v=W5F8nQuwuWY
[7] McKinsey, The case for an automotive software platform, (Accessed on
05/05/2023) (Jan. 2020).
URL https://www.mckinsey.com/industries/automotive-
and-assembly/our-insights/the-case-for-an-end-to-
end-automotive-software-platform
[8] M. Neukirchner, Demystifying the software-defined vehicle, (Accessed
on 11/05/2024) (11 2023).
URL https://www.elektrobit.com/tech-corner/
demystifying-the-software-defined-vehicle/
[9] E. Halshaw, The history of car technology, (Accessed on 11/05/2024)
(05 2022).
URL https://www.evanshalshaw.com/blog/the-history-of-
cars/
[10] S. Zhang, O. Makke, O. Gusikhin, A. Shah, A. Vasilakos, A se-
curity model for dependable vehicle middleware and mobile appli-
cations connection, in: Proceedings of the 4th International Con-
ference on Vehicle Technology and Intelligent Transport Systems,
SCITEPRESS - Science and Technology Publications, 2018. doi:
10.5220/0006704903790386.
[11] M. Kais, N. Hafez, M. Parent, An intelligent vehicle architecture for au-
tomated transportation in cities, in: 2001 European Control Conference
(ECC), 2001, pp. 277–282. doi:10.23919/ECC.2001.7075919.
[12] P. Fromm, P. Drews, Modular, service-oriented design and architecture
of smart vehicles for short distance person and freight transport, in:
IECON ’98. Proceedings of the 24th Annual Conference of the IEEE
Industrial Electronics Society (Cat. No.98CH36200), Vol. 4, 1998, pp.
2192–2197. doi:10.1109/IECON.1998.724061.
[13] J. Albus, M. Juberts, S. Szabo, A reference model architecture for in-
telligent vehicle and highway systems, in: Proceedings of the Intel-
ligent Vehicles ‘92 Symposium, 1992, pp. 378–384. doi:10.1109/
IVS.1992.252289.
[14] J. M. Josetxo Villanueva, Bouchra Achemlal, D. Martini, Strategies for
End to End Timing Guarantees in a Centralized Software Defined Vehi-
cle Architecture Combining CAN With TSN Backbone, in: Automotive
Ethernet Congress, 2023, (Accessed on 07/04/2023).
[15] M. B. e. a. Alexander Baule, Florian Garms, Car connectivity: What
consumers want and are willing to pay, (Accessed on 11/05/2024) (01
2024).
URL https://www.mckinsey.com/industries/automotive-
and-assembly/our-insights/car-connectivity-what-
consumers-want-and-are-willing-to-pay#/
[16] S. Corwin, N. Jameson, P. Willigman, The future of mobility: What’s
next?, Deloitte (2016) 28.
URL https://www2.deloitte.com/content/dam/insights/
us/articles/3367 Future-of-mobility-whats-next/
DUP Future-of-mobility-whats-next.pdf
[17] J. W. Edward Taylor, Norihiko Shirouzu, How Tesla defined a new era
for the global auto industry, (Accessed on 04/28/2023) (Jul. 2020).
URL https://www.reuters.com/article/us-autos-tesla-
newera-insight-idUSKCN24N0GB
[18] S. Voget, AUTOSAR and the automotive tool chain, in: 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010),
2010, pp. 259–262. doi:10.1109/DATE.2010.5457202.
[19] V. Bandur, G. Selim, V. Pantelic, M. Lawford, Making the case
for centralized automotive E/E architectures, IEEE Transactions on
Vehicular Technology 70 (2) (2021) 1230–1245. doi:10.1109/
tvt.2021.3054934.
[20] S. F¨ urst, M. Bechter, AUTOSAR for connected and autonomous ve-
hicles: The AUTOSAR adaptive platform, in: 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshop (DSN-W), 2016, pp. 215–217. doi:10.1109/DSN-
W.2016.24.
[21] J. M. Josetxo Villanueva, N. Navet, QoS-Predictable SOA on TSN: In-
sights from a Case-Study, in: Automotive Ethernet Congress, 2021, (Ac-
cessed on 07/04/2023).
[22] N. N. Hoai Hoang Bengtsson, Time-predictable communication in
service-oriented architecture - what are the challenges?, in: Automotive
Ethernet Congress, 2023, (Accessed on 07/04/2023).
[23] P. K. Oliver Creighton, Nicolas Navet, J. Migge, Towards Computer-
Aided, Iterative TSN-and Ethernet-based E/E Architecture Design, in:
2020 IEEE Standards Association (IEEE-SA) Ethernet & IP @ Auto-
motive Technology Day, 2020, (Accessed on 07/04/2023).
[24] Vector, Middleware Protocols in the Automobile: Service-Oriented,
Data-Centric or RESTful? These, Elektronik automotive (3 2020).
[25] CARIAD, Cariad launches application store for the volkswagen group,
(Accessed on 07/04/2023) (Mar. 2023).
URL https://cariad.technology/de/en/news/stories/
launch-application-store-for-volkswagen-group.html
[26] J. M. Nicolas Navet, Josetxo Villanueva, Early-stage topological and
technological choices for TSN-based communication, in: 2019 IEEE
Standards Association (IEEE-SA) Ethernet & IP @ Automotive Tech-
nology Day, 2019, (Accessed on 07/04/2023).
[27] V. C. D. Portal, Overview APIs, (Accessed on 06/28/2023) (2023).
URL https://developer.volvocars.com/apis/
[28] P. Hanse, The Hansen Report — Software Development – MB.OS Base
Layer, (Accessed on 10/07/2024) (2023).
URL https://www.vector.com/int/en/news/news/mercedes-
benz-mbos-base-layer/
[29] Junko Yoshida, Unveiled: BMW’s scalable av architecture, (Accessed
on 05/04/2023) (Apr. 2020).
URL https://www.eetimes.com/unveiled-bmws-scalable-av-
architecture/
[30] P. Laclau, Ethernet-as-a-Service for Software Defined Vehicles: Design
objectives and orientations for an Ethernet-based network stack, IEEE
SA Ethernet & IP @ Automotive Technology Day (2022) 1–22.
URL https://standards.ieee.org/events/automotive/
presentations-2022/
[31] A. J. Hawkins, GM now has its own API for software developers to
make cool apps for its cars, (Accessed on 04/16/2024) (Oct. 2023).
URL https://www.theverge.com/2023/10/12/23914060/gm-
uservices-api-software-apps-car-sdv
[32] SOME/IP, Scalable service-Oriented MiddlewarE over IP, (Accessed on
04/28/2023) (2023).
URL https://some-ip.com/
[33] Eclipse Software Defined Vehicle Working Group, Software defined
vehicle working group member’s update, (Accessed on 04/16/2024)
(Jan. 2023).
URL https://docs.google.com/presentation/d/
1uU4 BevDGuxFmEVvxt5-u99UZELF7BA2bEp2TneFZGw
[34] Z. Liu, W. Zhang, F. Zhao, Impact, challenges and prospect of software-
defined vehicles, Automotive Innovation 5 (2) (2022) 180–194. doi:
10.1007/s42154-022-00179-z.
[35] H. Proff, T. Pottebaum, P. Wolf, Software is transforming the automotive
world, Deloitte Insights (2020) 20.
URL https://www2.deloitte.com/content/dam/insights/
29
us/articles/22951 software-is-transforming-the-
automotive-world/DI Software-is-transforming-the-
automotive-world.pdf
[36] Vector, How have vehicle E/E systems evolved? — #engineeringthejig-
saw — episode f10 - youtube, (Accessed on 07/01/2023) (Nov. 2021).
URL https://www.youtube.com/watch?v=OjnQ52f1SEE
[37] Vector, How are vehicle E/E systems evolving? — #engineeringthejig-
saw — f11 - youtube, (Accessed on 07/01/2023) (Dec. 2021).
URL https://www.youtube.com/watch?v=XpvTOuOgGWY
[38] Bosch, The E/E architecture of the future, (Accessed on 05/05/2023)
(2023).
URL https://www.bosch-mobility.com/en/mobility-topics/
ee-architecture/
[39] S. Kugele, D. Hettler, J. Peter, Data-centric communication and con-
tainerization for future automotive software architectures, in: 2018 IEEE
International Conference on Software Architecture (ICSA), IEEE, 2018.
doi:10.1109/icsa.2018.00016.
[40] B. Murphy, What the Next Phase of Automotive Software Development
Looks Like, (Accessed on 04/28/2023) (2021).
URL https://www.aptiv.com/docs/default-source/
white-papers/2021 aptiv whitepaper cicd.pdf?sfvrsn=
5fbbe33b 24
[41] OASIS, OASIS SOA Reference Model TC, (Accessed on 20/12/2024)
(2023).
URL https://www.oasis-open.org/committees/soa-rm/
faq.php
[42] M. Richards, Microservices vs. service-oriented architecture, O’Reilly
Media Sebastopol, 2015.
[43] NXP Semiconductors, Vehicle architectures and networking training
academy, (Accessed on 07/01/2023) (2023).
URL https://www.nxp.com/design/training/vehicle-
architectures-and-networking-training-academy:
TS-VEHICLE-ARCHITECTURES-AND-NETWORKING-ACADEMY
[44] H. H. Bengtsson, M. Hiller, J. Migge, N. NAVET, Signal-oriented ECUs
in a centralized service-oriented architecture: Scalability of the layered
software architecture (01 June 2022).
[45] W.-Y. Liang, Y. Yuan, H.-J. Lin, A Performance Study on the Through-
put and Latency of Zenoh, MQTT, Kafka, and DDS (2023). arXiv:
2303.09419.
URL https://arxiv.org/abs/2303.09419
[46] DDS Foundation, How does DDS compare to other IoT technologies?,
(Accessed on 07/12/2023) (2023).
URL https://www.dds-foundation.org/features-benefits/
[47] J. S. Andrei Terechko, Yuting Fu, Middleware for safe software-defined
cars, (Accessed on 04/18/2024) (Oct. 2021).
URL https://www.sasg.nl/SASG 72 Roly-
poly on middleware.pdf
[48] Zenoh, Developer documentation, (Accessed on 04/20/2024) (Jan.
2023).
URL https://zenoh.io/docs/overview/what-is-zenoh/
[49] C. S. V. Guti´ errez, L. U. S. Juan, I. Z. Ugarte, V. M. Vilches, Real-
time linux communications: an evaluation of the linux communication
stack for real-time robotic applications (2018). arXiv:1808.10821,
doi:10.48550/arxiv.1808.10821.
[50] C. U. Marius Rotaru, Service oriented architecture: Design and imple-
mentation using automotive linux bsp, (Accessed on 05/24/2023) (Jun.
2019).
URL https://www.nxp.com.cn/docs/en/training-reference-
material/DESIGN-AND-IMPLEMENTATION-USING-AUTOMOTIVE-
LINUX-BSP.pdf
[51] P. Kleiner, AUTOSAR adaptive deployment with OCI containers for em-
bedded using VxWorks, (Accessed on 07/04/2023) (Sep. 2019).
[52] I. Ungurean, Timing comparison of the real-time operating systems
for small microcontrollers, Symmetry 12 (4) (2020). doi:10.3390/
sym12040592.
URL https://www.mdpi.com/2073-8994/12/4/592
[53] J. Ren, M. Zhao, H. Wang, T. Gao, P. Yao, Z. Shao, A time sen-
sitive network-based data distribution service implementation method,
in: 2022 International Symposium on Advances in Informatics,
Electronics and Education (ISAIEE), IEEE, 2022. doi:10.1109/
isaiee57420.2022.00040.
[54] L. Leonardi, L. L. Bello, G. Patti, Towards time-sensitive networking in
heterogeneous platforms with virtualization, in: 2020 25th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), IEEE, 2020. doi:10.1109/etfa46521.2020.9212116.
[55] B. Caruso, L. Leonardi, L. L. Bello, G. Patti, Design of a framework
for enabling TSN support in heterogeneous platforms with virtualization
and preliminary experimental results, in: 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA
), IEEE, 2021. doi:10.1109/etfa45728.2021.9613442.
[56] H. Sami, A. Mourad, W. El-Hajj, Vehicular-OBUs-As-On-Demand-
Fogs: Resource and Context Aware Deployment of Containerized
Micro-Services, IEEE/ACM Transactions on Networking 28 (2) (2020)
778–790. doi:10.1109/TNET.2020.2973800.
[57] A. Garbugli, L. Rosa, A. Bujari, L. Foschini, KuberneTSN: a Determin-
istic Overlay Network for Time-Sensitive Containerized Environments,
in: ICC 2023 - IEEE International Conference on Communications,
IEEE, 2023. doi:10.1109/icc45041.2023.10279214.
[58] D. Kuhlgatz, Data network for the car: The Controller Area Network
CAN, (Accessed on 05/08/2023) (Nov. 2016).
URL https://www.bosch.com/stories/the-controller-area-
network/
[59] NI, Creating a CAN bus communication platform based on the SAE
J1939 protocol and NI PXI, (Accessed on 07/01/2023) (2019).
URL https://www.ni.com/pt-pt/innovations/case-studies/
19/creating-a-can-bus-communication-platform-based-
on-the-sae-j1939-protocol.html
[60] S. Corrigan, Introduction to the controller area network (CAN), Appli-
cation Report, Texas Instruments (2002) 1–15.
URL http://masters.donntu.ru/2005/fvti/trofunenko/
library/sloa101.pdf
[61] P. Wilms, F. Hurley, Centralised software and zonal architectures for
future innovative ambient lighting enabled by E2B 10Base-T1S, IEEE
SA Ethernet & IP @ Automotive Technology Day (2022).
URL https://standards.ieee.org/events/automotive/
presentations-2022/
[62] B. N. Amel, B. Rim, J. Houda, H. Salem, J. Khaled, FlexRay ver-
sus Ethernet for vehicular networks, in: 2014 IEEE International
Electric Vehicle Conference (IEVC), IEEE, 2014. doi:10.1109/
ievc.2014.7056123.
[63] T.-C. Nichitelea, M.-G. Unguritu, Automotive ethernet applications
using scalable service-oriented middleware over IP: Service discov-
ery, in: 2019 24th International Conference on Methods and Models
in Automation and Robotics (MMAR), IEEE, 2019. doi:10.1109/
mmar.2019.8864701.
[64] B. Petersen, Signal to Service : Remote Control of Legacy Networks,
IEEE SA Ethernet & IP @ Automotive Technology Day (November
2022).
URL https://standards.ieee.org/events/automotive/
presentations-2022/
[65] M. Takrouni, A. Hasnaoui, I. Mejri, S. Hasnaoui, A new methodology
for implementing the data distribution service on top of gigabit ethernet
for automotive applications, Journal of Circuits, Systems and Computers
29 (13) (2020) 2050210. doi:10.1142/s0218126620502102.
[66] Vector, CAN/CAN fd/CAN xl, (Accessed on 05/09/2023) (2023).
URL https://www.vector.com/int/en/know-how/can/
[67] Z. Zuo, S. Yang, B. Ma, B. Zou, Y. Cao, Q. Li, S. Zhou, J. Li, Design
of a CANFD to SOME/IP gateway considering security for in-vehicle
networks, Sensors 21 (23) (2021) 7917. doi:10.3390/s21237917.
[68] NI, FlexRay Automotive Communication Bus Overview (2023).
URL https://www.ni.com/pt-pt/shop/seamlessly-connect-
to-third-party-devices-and-supervisory-system/
flexray-automotive-communication-bus-overview.html
[69] Microchip, Most technology, (Accessed on 07/03/2023) (2023).
URL https://www.microchip.com/en-us/solutions/
automotive-and-transportation/automotive-products/
connectivity/most-technology
[70] N. Dasanayaka, K. F. Hasan, C. Wang, Y. Feng, Enhancing Vulnera-
ble Road User Safety: A Survey of Existing Practices and Consider-
ation for Using Mobile Devices for V2X Connections, arXiv preprint
arXiv:2010.15502 (2020).
[71] R. Mishra, An overview of backbone technology behind the latest ad-
30
vanced gadgets in use: 4G & 5g, Spatial Information Research 31 (1)
(2023) 15–26. doi:10.1007/s41324-022-00474-1.
URL https://doi.org/10.1007/s41324-022-00474-1
[72] H. Fourati, R. Maaloul, L. Chaari, A survey of 5G network systems:
challenges and machine learning approaches, International Journal of
Machine Learning and Cybernetics 12 (2) (2021) 385–431. doi:
10.1007/s13042-020-01178-4.
URL https://doi.org/10.1007/s13042-020-01178-4
[73] G. Naik, D. Ogbe, J.-M. J. Park, Can Wi-Fi 7 support real-time appli-
cations? on the impact of multi link aggregation on latency, in: ICC
2021 - IEEE International Conference on Communications, 2021, pp.
1–6. doi:10.1109/ICC42927.2021.9500256.
[74] IEEE, IEEE standard for information technology–telecommunications
and information exchange between systems local and metropolitan area
networks–specific requirements part 11: Wireless LAN medium ac-
cess control (MAC ) and physical layer (PHY ) specifications amend-
ment 6: Light communications, IEEE Std 802.11bb-2023 (Amendment
to IEEE Std 802.11-2020 as amended by IEEE Std 802.11ax-2021,
IEEE Std 802.11ay-2021, IEEE Std 802.11ba-2021, IEEE Std 802.11az-
2022, IEEE Std 802.11-2020/Cor 1-2022, and IEEE Std 802.11bd-2023)
(2023) 1–37doi:10.1109/IEEESTD.2024.10315104.
[75] P. Teixeira, S. Sargento, P. Rito, M. Lu´ ıs, F. Castro, A sensing, commu-
nication and computing approach for vulnerable road users safety, IEEE
Access 11 (2023) 4914–4930. doi:10.1109/ACCESS.2023.3235863.
[76] E. Moradi-Pari, D. Tian, M. Bahramgiri, S. Rajab, S. Bai, DSRC
Versus LTE-V2X: Empirical performance analysis of direct vehic-
ular communication technologies, IEEE Transactions on Intelligent
Transportation Systems 24 (5) (2023) 4889–4903. doi:10.1109/
TITS.2023.3247339.
[77] B. Y. Yacheur, T. Ahmed, M. Mosbah, Analysis and comparison of IEEE
802.11p and IEEE 802.11bd, in: F. Krief, H. Aniss, L. Mendiboure,
S. Chaumette, M. Berbineau (Eds.), Communication Technologies for
Vehicles, Springer International Publishing, Cham, 2020, pp. 55–65.
[78] E. Khorov, I. Levitsky, Current status and challenges of Li-Fi: IEEE
802.11bb, IEEE Communications Standards Magazine 6 (2) (2022) 35–
41. doi:10.1109/MCOMSTD.0001.2100104.
[79] O. Alparslan, S. Arakawa, M. Murata, Next Generation Intra-Vehicle
Backbone Network Architectures, in: 2021 IEEE 22nd International
Conference on High Performance Switching and Routing (HPSR),
IEEE, 2021, pp. 1–7. doi:10.1109/HPSR52026.2021.9481803.
URL https://ieeexplore.ieee.org/document/9481803/
[80] G. Naik, B. Choudhury, J.-M. Park, IEEE 802.11bd & 5G NR V2X:
Evolution of radio access technologies for V2X communications, IEEE
Access 7 (2019) 70169–70184. doi:10.1109/ACCESS.2019.2919489.
URL https://ieeexplore.ieee.org/document/8723326/
[81] M. H. Farzaneh, A. Knoll, Time-sensitive networking (TSN): An exper-
imental setup, in: 2017 IEEE Vehicular Networking Conference (VNC),
IEEE, 2017, pp. 23–26. doi:10.1109/VNC.2017.8275648.
URL http://ieeexplore.ieee.org/document/8275648/
[82] Q. Bailleul, K. Jaffres-Runser, J.-L. Scharbarg, P. Cuenot, Towards ro-
bust network synchronization with IEEE 802.1 as, ETR 20 (2020) 25.
[83] M. Malinverno, G. Avino, C. Casetti, C. F. Chiasserini, F. Malandrino,
S. Scarpina, Edge-Based Collision Avoidance for Vehicles and Vulnera-
ble Users: An Architecture Based on MEC, IEEE Vehicular Technology
Magazine 15 (1) (2020) 27–35. doi:10.1109/MVT.2019.2953770.
[84] A. Khakimov, A. Loborchuk, I. Ibodullokhodzha, D. Poluektov, I. A. El-
gendy, A. Muthanna, Edge computing resource allocation orchestration
system for autonomous vehicles, in: The 4th International Conference
on Future Networks and Distributed Systems (ICFNDS), ACM, 2020.
doi:10.1145/3440749.3442594.
[85] R. Lopes, D. Raposo, S. Sargento, Towards time sensitive networking
on smart cities: Techniques, challenges, and solutions (2023). arXiv:
2312.03635.
URL https://arxiv.org/abs/2312.03635
[86] Y. Seol, D. Hyeon, J. Min, M. Kim, J. Paek, Timely Survey of Time-
Sensitive Networking: Past and Future Directions, IEEE Access 9
(2021) 142506–142527. doi:10.1109/ACCESS.2021.3120769.
URL https://ieeexplore.ieee.org/document/9576720/
[87] J. F. Carlos J. Bernardos, IETF Reliable Available Wireless (RAW),
(Accessed on 12/21/2023) (Jul. 2023).
URL https://www.ieee802.org/1/files/public/docs2023/
tutorial-bernardos-farkas-RAW-0723-v01.pdf
[88] N. Finn, P. Thubert, B. Varga, J. Farkas, Deterministic Networking Ar-
chitecture (Oct. 2019). doi:10.17487/RFC8655.
URL https://www.rfc-editor.org/info/rfc8655
[89] X. Geng, Y. Ryoo, D. Fedyk, R. Rahman, Z. Li, Deterministic Network-
ing (DetNet) YANG Model, Internet-Draft draft-ietf-detnet-yang-18,
Internet Engineering Task Force, work in Progress (Jul. 2023).
URL https://datatracker.ietf.org/doc/draft-ietf-
detnet-yang/18/
[90] IEEE, IEEE standard for local and metropolitan area networks–frame
replication and elimination for reliability, IEEE Std 802.1CB-2017
(2017) 1–102doi:10.1109/IEEESTD.2017.8091139.
[91] IEEE, IEEE standard for local and metropolitan area networks– vir-
tual bridged local area networks amendment 12: Forwarding and queu-
ing enhancements for time-sensitive streams, IEEE Std 802.1Qav-2009
(Amendment to IEEE Std 802.1Q-2005) (2010) 1–72doi:10.1109/
IEEESTD.2010.8684664.
[92] IEEE, IEEE standard for local and metropolitan area networks –
bridges and bridged networks - amendment 25: Enhancements for
scheduled traffic, IEEE Std 802.1Qbv-2015 (2016) 1–57doi:10.1109/
IEEESTD.2016.8613095.
[93] H. Wang, Z. Zhao, J. Wei, Research on the application of time sensitive
networking in unmanned in-vehicle network, in: ISCTT 2021; 6th Inter-
national Conference on Information Science, Computer Technology and
Transportation, 2021, pp. 1–8.
[94] Y. Ozawa, Y. Ito, Evaluation of TCP Performance Under In-Vehicle
Networks With IEEE 802.1 TSN, in: 2022 IEEE 11th Global Con-
ference on Consumer Electronics (GCCE), IEEE, 2022, pp. 668–669.
doi:10.1109/GCCE56475.2022.10014097.
URL https://ieeexplore.ieee.org/document/10014097/
[95] M. Ulbricht, S. Senk, H. K. Nazari, H.-H. Liu, M. Reisslein, G. T.
Nguyen, F. H. P. Fitzek, TSN-FlexTest: Flexible TSN Measurement
Testbed (Extended Version) (Nov. 2022). arXiv:2211.10413, doi:
10.48550/arxiv.2211.10413.
[96] L. Deng, G. Xie, H. Liu, Y. Han, R. Li, K. Li, A Survey of Real-Time
Ethernet Modeling and Design Methodologies: From AVB to TSN,
ACM Comput. Surv. 55 (2) (Jan. 2022). doi:10.1145/3487330.
[97] S. Samii, H. Zinner, Level 5 by layer 2: Time-sensitive networking for
autonomous vehicles, IEEE Communications Standards Magazine 2 (2)
(2018) 62–68. doi:10.1109/MCOMSTD.2018.1700079.
[98] D. Cavalcanti, J. Perez-Ramirez, M. M. Rashid, J. Fang, M. Galeev,
K. B. Stanton, Extending accurate time distribution and timeliness ca-
pabilities over the air to enable future wireless industrial automation
systems, Proceedings of the IEEE 107 (6) (2019) 1132–1152. doi:
10.1109/JPROC.2019.2903414.
[99] A. Regev, M. Gubow, PHY latency and its effects on TSN performance,
IEEE SA Ethernet & IP @ Automotive Technology Day (2022) 1–18.
URL https://standards.ieee.org/events/automotive/
presentations-2022/
[100] T. H. Christian Mardmoeller, Time-sensitive networking (Nov. 2023).
[101] Z. Satka, M. Ashjaei, H. Fotouhi, M. Daneshtalab, M. Sj¨ odin,
S. Mubeen, A comprehensive systematic review of integration of time
sensitive networking and 5G communication, Journal of Systems Archi-
tecture 138 (2023) 102852. doi:10.1016/j.sysarc.2023.102852.
URL https://www.sciencedirect.com/science/article/pii/
S1383762123000310
[102] Cisco, Time-sensitive networking: A technical introduction (2017).
URL https://www.cisco.com/c/dam/en/us/solutions/
collateral/industry-solutions/white-paper-c11-
738950.pdf
[103] L. Zhao, F. He, E. Li, J. Lu, Comparison of time sensitive network-
ing (TSN) and ttethernet, in: 2018 IEEE/AIAA 37th Digital Avion-
ics Systems Conference (DASC), 2018, pp. 1–7. doi:10.1109/
DASC.2018.8569454.
[104] S. S. Craciunas, R. S. Oliver, T. Ag, An overview of scheduling mecha-
nisms for time-sensitive networks, Proceedings of the Real-time summer
´
´
school L’
Ecole d’
Et´ e Temps R´ eel (ETR) (2017) 1551–3203.
[105] A. Goldsmith, Path Loss and Shadowing, Cambridge University Press,
2005, Ch. 2 - Path Loss and Shadowing, pp. 27–63. doi:10.1017/
CBO9780511841224.003.
[106] A. F. M. S. Shah, A. N. Qasim, M. A. Karabulut, H. Ilhan, M. B. Is-
31
lam, Survey and performance evaluation of multiple access schemes for
next-generation wireless communication systems, IEEE Access 9 (2021)
113428–113442. doi:10.1109/ACCESS.2021.3104509.
[107] J. V. e. a. Luis M. Contreras, Antonio de la Oliva, Analysis of use cases
and system requirements, Report D11, PREDICT6G, published (Jun.
2023).
URL https://predict-6g.eu/deliverables/
[108] H. N. N. e. a. Dhruvin Patel, Edgardo Montes de Oca, Use Cases and
Architecture Principles, Report D11, DETERMINISTIC6G, published
(Jun. 2023).
URL https://deterministic6g.eu/images/deliverables/
DETERMINISTIC6G-D1.1-v1.0.pdf
[109] D. Cavalcanti, C. Cordeiro, M. Smith, A. Regev, WiFi TSN: En-
abling Deterministic Wireless Connectivity over 802.11, IEEE Com-
munications Standards Magazine 6 (4) (2022) 22–29. doi:10.1109/
MCOMSTD.0002.2200039.
[110] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer,
O. Koufopavlou, Software-Defined Networking (SDN): Layers and Ar-
chitecture Terminology (Jan. 2015). doi:10.17487/RFC7426.
URL https://www.rfc-editor.org/info/rfc7426
[111] D. P. Hubertus Munz, Torsten Dudda, Technique for time-sensitive net-
working over a radio access network (Mar. 2022).
[112] O. Seijo, J. A. L´ opez-Fern´ andez, I. Val, w-SHARP: Implementation of
a High-Performance Wireless Time-Sensitive Network for Low Latency
and Ultra-low Cycle Time Industrial Applications, IEEE Transactions
on Industrial Informatics 17 (5) (2021) 3651–3662. doi:10.1109/
TII.2020.3007323.
[113] ETSI (European Telecommunications Standards Institute), ETSI TS 123
501 V16.5.1 / 3GPP TS 23.501 version 16.5.1 Release 16, Tech. rep.,
ETSI (European Telecommunications Standards Institute) (2020).
[114] 5G Alliance for Connected Industries and Automation, Integration of
5G with time-sensitive networking for industrial communications (Feb.
2021).
URL https://5g-acia.org/whitepapers/integration-of-
5g-with-time-sensitive-networking-for-industrial-
communications/
[115] R. P. Joseph Vinay, Quality of service mapping for time-sensitive net-
work traffic in a wireless communication system (Dec. 2021).
[116] Z. Satka, M. Ashjaei, H. Fotouhi, M. Daneshtalab, M. Sj¨ odin,
S. Mubeen, QoS-MAN: A Novel QoS Mapping Algorithm for TSN-5G
Flows, in: 2022 IEEE 28th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2022, pp.
220–227. doi:10.1109/RTCSA55878.2022.00030.
[117] Z. Satka, D. Pantzar, A. Magnusson, M. Ashjaei, H. Fotouhi, M. Sj¨ odin,
M. Daneshtalab, S. Mubeen, Developing a translation technique for con-
verged TSN-5G communication, in: 2022 IEEE 18th International Con-
ference on Factory Communication Systems (WFCS), 2022, pp. 1–8.
doi:10.1109/WFCS53837.2022.9779191.
[118] A. Larra˜ naga, M. C. Lucas-Esta˜ n, I. Martinez, I. Val, J. Gozalvez,
Analysis of 5G-TSN integration to support industry 4.0, in: 2020 25th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Vol. 1, 2020, pp. 1111–1114. doi:10.1109/
ETFA46521.2020.9212141.
[119] P. Kehl, J. Ansari, M. H. Jafari, P. Becker, J. Sachs, N. K¨ onig,
A. G¨ oppert, R. H. Schmitt, Prototype of 5G integrated with TSN for
edge-controlled mobile robotics, Electronics 11 (11) (2022). doi:
10.3390/electronics11111666.
URL https://www.mdpi.com/2079-9292/11/11/1666
[120] M. H. Farzaneh, A. Knoll, An ontology-based plug-and-play ap-
proach for in-vehicle time-sensitive networking (TSN), in: 2016 IEEE
7th Annual Information Technology, Electronics and Mobile Com-
munication Conference (IEMCON), 2016, pp. 1–8. doi:10.1109/
IEMCON.2016.7746299.
[121] A. A. Syed, S. Ayaz, T. Leinmuller, M. Chandra, Fault-Tolerant
Static Scheduling and Routing for In-vehicle Networks, in: 2022
32nd International Telecommunication Networks and Applications
Conference (ITNAC), IEEE, 2022, pp. 273–279. doi:10.1109/
ITNAC55475.2022.9998340.
URL https://ieeexplore.ieee.org/document/9998340/
[122] J. Zou, X. Dai, J. A. McDermid, reTSN: Resilient and Efficient Time-
Sensitive Network for Automotive In-Vehicle Communication, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 42 (3) (2023) 754–767. doi:10.1109/TCAD.2022.3190235.
URL https://ieeexplore.ieee.org/document/9826899/
[123] D. Wang, T. Sun, Leveraging 5G TSN in V2X Communication for
Cloud Vehicle, in: 2020 IEEE International Conference on Edge
Computing (EDGE), IEEE, 2020, pp. 106–110. doi:10.1109/
EDGE50951.2020.00023.
URL https://ieeexplore.ieee.org/document/9284334/
[124] P. Ding, D. Liu, Y. Shen, H. Duan, Q. Zheng, Edge-to-Cloud Intelli-
gent Vehicle-Infrastructure Based on 5G Time-Sensitive Network Inte-
gration, in: 2022 IEEE International Symposium on Broadband Multi-
media Systems and Broadcasting (BMSB), IEEE, 2022, pp. 1–5. doi:
10.1109/BMSB55706.2022.9828687.
URL https://ieeexplore.ieee.org/document/9828687/
[125] C. Mauclair, M. Guti´ errez, J. Migge, N. Navet, Do we really need TSN
in next-generation helicopters? insights from a case-study, in: 2021
IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), 2021,
pp. 1–7. doi:10.1109/DASC52595.2021.9594349.
[126] N. Ambrosy, T. Kampa, U. Jumar, D. Großmann, 5G and detnet: To-
wards holistic determinism in industrial networks, in: 2022 IEEE In-
ternational Conference on Industrial Technology (ICIT), 2022, pp. 1–6.
doi:10.1109/ICIT48603.2022.10002776.
[127] V. Meyer, M. L. da Silva, D. F. Kirchoff, C. A. De Rose, Iada: A dynamic
interference-aware cloud scheduling architecture for latency-sensitive
workloads, Journal of Systems and Software 194 (2022) 111491. doi:
10.1016/j.jss.2022.111491.
URL https://www.sciencedirect.com/science/article/pii/
S0164121222001698
[128] Intel Corporation, Mobileye’s self-driving secret? 200 PB of data,
(Accessed on 07/20/2023) (Jan. 2022).
URL https://www.intel.com/content/www/us/en/newsroom/
news/mobileye-ces-2022-self-driving-secret-data.html
[129] Mathworks, Next Generation Wi Fi Networks for Time Critical Appli-
cations, (Accessed on 05/08/2023) (Nov. 2019).
URL https://www.mathworks.com/content/dam/mathworks/
mathworks-dot-com/images/events/matlabexpo/us/2019/
next-generation-wi-fi-networks-for-time-critical-
applications.pdf
[130] 5GAA, C-V2X Use Cases : Methodology, Examples and Service Level
Requirements, Tech. rep., 5GAA (2019).
URL https://5gaa.org/content/uploads/2019/07/
5GAA 191906 WP CV2X UCs v1-3-1.pdf
[131] ETSI (European Telecommunications Standards Institute), TS 103 561
V0.0.2 (2022-09) - Manoeuvres’ Coordination Service; Release 2, Tech.
rep., ETSI (European Telecommunications Standards Institute) (2022).
[132] A. Pretschner, M. Broy, I. H. Kruger, T. Stauner, Software engineering
for automotive systems: A roadmap, in: Future of Software Engineering
(FOSE ’07), IEEE, 2007. doi:10.1109/fose.2007.22.
[133] M. O.-C. Sean Selitrennikoff, Architecting for Secure, Safe and Ag-
ile Software Defined Vehicles - Learnings from the Personal Com-
puter industry, 1st Edition, Vol. 2384 of VDI-Berichte, VDI Verlag,
D¨ usseldorf, 2021, Ch. End-2-End Architecture, pp. 395–408. doi:
10.51202/9783181023846-395.
[134] A. Chebaane, A. Khelil, N. Suri, Time-critical fog computing for vehic-
ular networks (Apr. 2020). doi:10.1002/9781119551713.ch17.
[135] R. Deng, R. Lu, C. Lai, T. H. Luan, H. Liang, Optimal workload allo-
cation in fog-cloud computing toward balanced delay and power con-
sumption, IEEE Internet of Things Journal 3 (6) (2016) 1171–1181.
doi:10.1109/JIOT.2016.2565516.
[136] S. Park, Y. Yoo, Real-time scheduling using reinforcement learning tech-
nique for the connected vehicles, in: 2018 IEEE 87th Vehicular Technol-
ogy Conference (VTC Spring), IEEE, 2018, pp. 1–5.
[137] I. Farris, T. Taleb, M. Bagaa, H. Flick, Optimizing service replication
for mobile delay-sensitive applications in 5G edge network, in: 2017
IEEE International Conference on Communications (ICC), IEEE, 2017,
pp. 1–6.
[138] M. Silva, P. Teixeira, C. Gomes, D. Dias, M. Lu´ ıs, S. Sargento, Ex-
ploring software defined networks for seamless handovers in vehic-
ular networks, Vehicular Communications 31 (2021) 100372. doi:
10.1016/j.vehcom.2021.100372.
URL https://www.sciencedirect.com/science/article/pii/
32
S2214209621000413
[139] Y. Asabe, E. Javanmardi, J. Nakazato, M. Tsukada, H. Esaki, Auto-
wareV2X: Reliable V2X communication and collective perception for
autonomous driving, in: The 2023 IEEE 97th Vehicular Technology
Conference (VTC2023-Spring), Florence, Italy, 2023.
[140] A. L. Andreas Herzig, Daniel Gamber, Human vs. ”digital driver” -
compliance and digital homologation challenges in the automotive
industry, (Accessed on 07/04/2023) (Jun. 2023).
URL https://engagestandards.ieee.org/Human-vs-AI-
Driver-Webinar-Registration.html
[141] Z. Laaroussi, R. Morabito, T. Taleb, Service provisioning in vehicular
networks through edge and cloud: An empirical analysis, in: 2018 IEEE
Conference on Standards for Communications and Networking (CSCN),
IEEE, 2018. doi:10.1109/cscn.2018.8581855.
[142] StarlingX, Time sensitive networking, (Accessed on 04/16/2024) (Apr.
2024).
URL https://docs.starlingx.io/operations/tsn.html
[143] INET, Time-aware shaping, (Accessed on 04/16/2024) (Feb. 2023).
URL https://inet.omnetpp.org/docs/showcases/tsn/
trafficshaping/timeawareshaper/doc/index.html
[144] [145] K. Kasichainula, Time sensitive networking device (Aug. 2020).
S. Bush, Time sensitive network (TSN) scheduler with verification (Sep.
2021).
[146] G. Patti, L. L. Bello, L. Leonardi, Deadline-aware online scheduling of
TSN flows for automotive applications, IEEE Transactions on Industrial
Informatics (2022).
[147] C. Sommer, R. German, F. Dressler, Bidirectionally coupled network
and road traffic simulation for improved IVC analysis, IEEE Trans-
actions on Mobile Computing 10 (1) (2011) 3–15. doi:10.1109/
TMC.2010.133.
[148] M. Takrouni, M. Gdhaifi, A. Hasnaoui, I. Mejri, S. Hasnaoui, Design and
implementation of a simulink DDS blockset and its integration to an ac-
tive frame steering blockset conformed to SAE ElectricVehicle, in: 2017
IEEE /ACS 14th International Conference on Computer Systems and
Applications (AICCSA), IEEE, 2017. doi:10.1109/aiccsa.2017.52.
11 Enhancing Automotive User Experience with Dynamic Service Orchestration for Software Defined Vehicles
Pierre Laclau, Stéphane Bonnet, Bertrand Ducourthial, Xiaoting Li, Trista Lin
https://arxiv.org/pdf/2407.02491
REFERENCES
[1] M. Haeberle, F. Heimgaertner, H. Loehr, N. Nayak, D. Grewe, S. Schildt,
and M. Menth, “Softwarization of Automotive E/E Architectures: A
Software-Defined Networking Approach,” in 2020 IEEE Vehicular Net-
working Conference (VNC), Dec. 2020, pp. 1–8.
[2] X. Hu, K. Wang, X. Liu, Y. Sun, P. Li, and S. Guo, “Energy management
for EV charging in software-defined green vehicle-to-grid network,”
IEEE Communications Magazine, vol. 56, no. 5, pp. 156–163, 2018.
[3] F. Zhao, H. Song, and Z. Liu, “Identification and Analysis of Key
Technical Elements and Prospects for Software-Defined Vehicles,” SAE
International, Warrendale, PA, SAE Technical Paper 2022-01-7002, Jan.
2022, iSSN: 0148-7191, 2688-3627.
[4] V. Bandur, G. Selim, V. Pantelic, and M. Lawford, “Making the Case
for Centralized Automotive E/E Architectures,” IEEE Transactions on
Vehicular Technology, vol. PP, pp. 1–1, Jan. 2021.
[5] W. Zeng, M. A. S. Khalid, and S. Chowdhury, “In-Vehicle Networks
Outlook: Achievements and Challenges,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 3, pp. 1552–1571, 2016.
[6] M. Rumez, D. Grimm, R. Kriesten, and E. Sax, “An Overview of Au-
tomotive Service-Oriented Architectures and Implications for Security
Countermeasures,” IEEE access : practical innovations, open solutions,
vol. 8, pp. 221 852–221 870, 2020.
[7] C. Lin, G. Han, J. Du, T. Xu, and Y. Peng, “Adaptive Traffic Engineering
Based on Active Network Measurement Towards Software Defined
Internet of Vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 6, pp. 3697–3706, Jun. 2021, conference Name:
IEEE Transactions on Intelligent Transportation Systems.
[8] H. Askaripoor, M. Hashemi Farzaneh, and A. Knoll, “E/E Architecture
Synthesis: Challenges and Technologies,” Electronics, Jan. 2022.
[9] P. Dai, K. Liu, Q. Zhuge, E. H.-M. Sha, V. C. S. Lee, and S. H.
Son, “Quality-of-Experience-Oriented Autonomous Intersection Control
in Vehicular Networks,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 7, pp. 1956–1967, Jul. 2016, conference Name:
IEEE Transactions on Intelligent Transportation Systems.
[10] X. Li, C. F. Chiasserini, J. Mangues-Bafalluy, J. Baranda, G. Landi,
B. Martini, X. Costa-P´ erez, C. Puligheddu, and L. Valcarenghi, “Au-
tomated Service Provisioning and Hierarchical SLA Management in
5G Systems,” IEEE Transactions on Network and Service Management,
vol. 18, no. 4, pp. 4669–4684, Dec. 2021.
[11] A. Frigerio, B. Vermeulen, and K. Goossens, “Component-Level ASIL
Decomposition for Automotive Architectures,” in 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W), Jun. 2019, pp. 62–69.
[12] S. Kugele, P. Obergfell, M. Broy, O. Creighton, M. Traub, and
W. Hopfensitz, “On Service-Orientation for Automotive Software,” in
2017 IEEE International Conference on Software Architecture (ICSA),
Apr. 2017, pp. 193–202.
[13] M. Schindewolf, H. Stoll, H. Guissouma, A. Puder, E. Sax, A. Vetter,
M. Rumez, and J. Henle, “A Comparison of Architecture Paradigms for
Dynamic Reconfıgurable Automotive Networks,” in 2022 International
Conference on Connected Vehicle and Expo (ICCVE), Mar. 2022.
[14] J. Frtunikj, M. Armbruster, and A. Knoll, “Run-Time Adaptive Error and
State Management for Open Automotive Systems,” in 2014 IEEE In-
ternational Symposium on Software Reliability Engineering Workshops,
Nov. 2014, pp. 467–472.
[15] X. Liao, Z. Wang, X. Zhao, K. Han, P. Tiwari, M. J. Barth, and
G. Wu, “Cooperative Ramp Merging Design and Field Implementation:
A Digital Twin Approach Based on Vehicle-to-Cloud Communication,”
IEEE Transactions on Intelligent Transportation Systems, 2022.
[16] B. Shi, X. Tu, B. Wu, and Y. Peng, “Recent Advances in Time-Sensitive
Network Configuration Management: A Literature Review,” Journal of
Sensor and Actuator Networks, vol. 12, no. 4, p. 52, Aug. 2023.
[17] K. Halba, C. Mahmoudi, and E. Griffor, “Robust Safety for Autonomous
Vehicles through Reconfigurable Networking,” Electronic Proceedings
in Theoretical Computer Science, vol. 269, pp. 48–58, Apr. 2018.
[18] T. Hackel, P. Meyer, F. Korf, and T. C. Schmidt, “Software-Defined
Networks Supporting Time-Sensitive In-Vehicular Communication,” in
IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019.
[19] T. Haugg, M. F. Soltani, T. Hackel, P. Meyer, F. Korf, and T. C. Schmidt,
“Simulation-based Evaluation of a Synchronous Transaction Model for
Time-Sensitive Software-Defined Networks,” p. 9, 2021.
[20] Y. Peng, B. Shi, T. Jiang, X. Tu, D. Xu, and K. Hua, “A Survey on In-
Vehicle Time-Sensitive Networking,” IEEE Internet of Things Journal,
vol. 10, no. 16, pp. 14 375–14 396, Aug. 2023.
[21] D. F. K¨ ulzer, S. Sta´ nczak, and M. Botsov, “Novel QoS Control Frame-
work for Automotive Safety-Related and Infotainment Services,” in 2020
IEEE Wireless Communications and Networking Conference (WCNC),
May 2020, pp. 1–7.
[22] P. Laclau, S. Bonnet, B. Ducourthial, X. Li, and T. Lin, “Predictive Net-
work Configuration with Hierarchical Spectral Clustering for Software
Defined Vehicles,” in 2023 IEEE 97th Vehicular Technology Conference
(VTC2023-Spring), Jun. 2023, pp. 1–5.
[23] R. Ranjan, B. Benatallah, S. Dustdar, and M. P. Papazoglou, “Cloud Re-
source Orchestration Programming: Overview, Issues, and Directions,”
IEEE Internet Computing, vol. 19, no. 5, pp. 46–56, Sep. 2015.
[24] A. Tosatto, P. Ruiu, and A. Attanasio, “Container-Based Orchestration
in Cloud: State of the Art and Challenges,” in 2015 Ninth International
Conference on Complex, Intelligent, and Software Intensive Systems, Jul.
2015, pp. 70–75.
[25] Y. Jiang, Z. Huang, and D. H. K. Tsang, “Challenges and Solutions in
Fog Computing Orchestration,” IEEE Network, May 2018.
11
[26] N. Nayak, D. Grewe, and S. Schildt, “Automotive Container Orches-
tration: Requirements, Challenges and Open Directions,” in 2023 IEEE
Vehicular Networking Conference (VNC), Apr. 2023, pp. 61–64.
[27] M. Schindewolf, D. Grimm, C. Lingor, and E. Sax, “Toward a Resilient
Automotive Service-Oriented Architecture by using Dynamic Orchestra-
tion,” in 2022 IEEE 1st International Conference on Cognitive Mobility
(CogMob), Oct. 2022, pp. 000 147–000 154.
[28] J. C. Nobre, A. M. de Souza, D. Ros´ ario, C. Both, L. A. Villas,
E. Cerqueira, T. Braun, and M. Gerla, “Vehicular software-defined
networking and fog computing: Integration and design principles,” Ad
Hoc Networks, vol. 82, pp. 172–181, Jan. 2019.
[29] P. Rani, N. Hussain, R. Khan, Y. Sharma, and P. Shukla, “Vehicular
Intelligence System: Time-Based Vehicle Next Location Prediction in
Software-Defined Internet of Vehicles (SDN-IOV) for the Smart Cities,”
Oct. 2021, pp. 35–54.
[30] F. Gurski, C. Rehs, and J. Rethmann, “Knapsack problems: A parame-
terized point of view,” Theoretical Computer Science, Jul. 2019.
[31] V. Cacchiani, M. Iori, A. Locatelli, and S. Martello, “Knapsack problems
— An overview of recent advances. Part II: Multiple, multidimensional,
and quadratic knapsack problems,” Computers & Operations Research,
vol. 143, p. 105693, Jul. 2022.
[32] W. Gong and X. Zhou, “A survey of SAT solver,” AIP Conference
Proceedings, vol. 1836, no. 1, p. 020059, Jun. 2017.
[33] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “vZ - An Optimizing SMT
Solver,” in Tools and Algorithms for the Construction and Analysis of
Systems, ser. Lecture Notes in Computer Science, C. Baier and C. Tinelli,
Eds. Berlin, Heidelberg: Springer, 2015, pp. 194–199.
[34] P. Chu and J. Beasley, “A Genetic Algorithm for the Multidimensional
Knapsack Problem,” Journal of Heuristics, vol. 4, pp. 63–86, Jun. 1998.
[35] M. Yan, C. A. Chan, A. F. Gygax, J. Yan, L. Campbell, A. Nirmalathas,
and C. Leckie, “Modeling the Total Energy Consumption of Mobile
Network Services and Applications,” Energies, vol. 12, no. 1, Jan. 2019.
[36] P. Weber, P. Weiss, D. Reinhardt, and S. Steinhorst, “Energy-Optimized
Elastic Application Distribution for Automotive Systems in Hybrid
Cloud Architectures,” in 2020 23rd Euromicro Conference on Digital
System Design (DSD), Aug. 2020, pp. 455–462.
12 Chiplets on Wheels: Review Paper on Holistic Chiplet Solutions for Autonomous Vehicles
Swathi Narashiman, Venkat A, Divyaratna Joshi, Deepak Sridhar, Harish Rajesh, Sanjay Sattva, Aniruddha S, Jayanth B, Varun Manjunath, Ragavendiran N
https://arxiv.org/pdf/2406.00182
References
[1] Boston Consulting Group. The future of automotive compute, white paper. BCG, n.d.
[2] Kandou. https://kandou.com/. Accessed: 2023-05-27.
[3] Make vs. buy. Semiconductor Engineering. Accessed: 2023-05-27.
37
Chiplets on Wheels
[4] Eliyan. https://eliyan.com/. Accessed: 2023-05-27.
[5] Artificial intelligence. Tesla. Accessed: 2023-05-27.
[6] Cariad. https://cariad.technology/. Accessed: 2023-05-27.
[7] The book of ford. Intel. Accessed: 2023-05-27.
[8] Alexander Graening, Saptadeep Pal, and Puneet Gupta. Chiplets: How small is too small? In 2023 60th ACM/IEEE
Design Automation Conference (DAC), pages 1–6, 2023.
[9] Jaguar land rover partners tata technologies to accelerate digital transformation. Jaguar Land Rover. Accessed:
2023-05-27.
[10] Tata plans to invest rs 40,000 crore for chip plant in assam. Times of India. Accessed: 2023-05-27.
[11] Automotive relationships shifting with chiplets. Semiconductor Engineering. Accessed: 2023-05-27.
[12] All-in-one design integrates microfluidic cooling into electronic chips. https://www.nature.com/articles/
d41586-020-02503-1. Accessed: 2023-05-27.
[13] Darin Sharar, Nicholas Jankowski, and Avram Bar-Cohen. Two-phase fluid selection for high-temperature
automotive platforms. International Journal of Heat and Mass Transfer, 2012.
[14] Ieee standard for test access architecture for three-dimensional stacked integrated circuits. IEEE Std 1838-2019,
March 2019.
[15] McKinsey & Company. Automotive semiconductors for the autonomous age. https:
//www.mckinsey.com/industries/industrials-and-electronics/our-insights/
automotive-semiconductors-for-the-autonomous-age. Accessed: 2023-05-27.
[16] Reference for Business. Make or buy decisions. https://www.referenceforbusiness.com/management/
Log-Mar/Make-or-Buy-Decisions.html. Accessed: 2023-05-27.
[17] Title not provided. Author(s). Accessed: 2023-05-27.
[18] Signal propagation delay pcb. Proto Express. Accessed: 2023-05-27.
[19] Signal integrity calculator. EMI Software. Accessed: 2023-05-27.
[20] A. Heinig. Proceedings of the chiplet summit. 2023. https://chipletsummit.com/proceeding_files/
a0q5f000001WuE0/20230125_A-102_Heinig.PDF.
[21] Author(s). Is this the ultimate chiplet interconnect technology? EE Journal, n.d.
[22] Eliyan achieves first silicon for breakthrough nulink phy technology. New Electronics, n.d.
[23] Karl Freund. Eliyan technology may rewrite how chiplets come together. Forbes, 2023.
[24] Author(s). Title not provided. IEEE Xplore, n.d.
[25] Author(s). Iftle 518: Apple m1 ultrafusion technology. 3D InCites, 2022.
[26] A. Bar-Cohen, F. L. Robinson, and D. C. Deisenroth. Challenges and opportunities in gen3 embedded cooling
with high-quality microgap flow. In 2018 International Conference on Electronics Packaging and iMAPS All Asia
Conference (ICEP-IAAC), pages K–1–K–12, Mie, Japan, 2018.
[27] Exploded view of the microfluidics channels design. https://3dviewer.tno.nl/microchipcooling. Ac-
cessed: 2023-05-27.
[28] M. A. Gómez, R. Bellas, A. González-Gil, A. Cacabelos, and A. Larrañaga. Thermal study of a passive cooling
device operating through a bubble lifting cltpt of novec 7000 with a two-fluid condenser. International Journal of
Heat and Mass Transfer, 2021.
13 A Containerized Microservice Architecture for a ROS 2 Autonomous Driving Software: An End-to-End Latency Evaluation
Tobias Betz, Long Wen, Fengjunjie Pan, Gemb Kaljavesi, Alexander Zuepke, Andrea Bastoni, Marco Caccamo, Alois Knoll, Johannes Betz
https://arxiv.org/pdf/2403.14460
REFERENCES
[1] O. Burkacky, J. Deichmann, and J. P. Stein, Automotive
software and electronics 2030: Mapping the sector’s
future landscape, 2019. [Online]. Available: https : / /
www. mckinsey. com /∼ / media / mckinsey / industries /
automotive%5C%20and%5C%20assembly/our%5C%
20insights/mapping%5C%20the%5C%20automotive%
5C % 20software % 5C % 20and % 5C % 20electronics %
5C % 20landscape % 5C % 20through % 5C % 202030 /
outlook%5C%20on%5C%20the%5C%20automotive%
5C % 20software % 5C % 20and % 5C % 20electronics %
5C % 20market % 5C % 20through % 5C % 202030 /
automotive-software-and-electronics-2030-full-report.
pdf.
[2] G. Kumar and P. K. Bhatia, “Comparative Analysis
of Software Engineering Models from Traditional to
Modern Methodologies,” in 2014 Fourth International
Conference on Advanced Computing & Communication
Technologies, 2014, pp. 189–196. DOI: 10.1109/ACCT.
2014.73.
[3] M. Staron and D. Durisic, “AUTOSAR Standard,” in
Automotive Software Architectures: An Introduction.
Cham: Springer International Publishing, 2017, pp. 81–
116, ISBN: 978-3-319-58610-6. DOI: 10.1007/978- 3-
319-58610-6 4.
[4] S. Mart´ ınez-Fern´ andez, C. P. Ayala, X. Franch, and
E. Y. Nakagawa, “A Survey on the Benefits and Draw-
backs of AUTOSAR,” in Proceedings of the First In-
ternational Workshop on Automotive Software Architec-
ture, ser. WASA ’15, Montr´ eal, QC, Canada: Associa-
tion for Computing Machinery, 2015, pp. 19–26, ISBN:
9781450334440. DOI: 10.1145/2752489.2752493.
[5] M. M. Islam, M. T. R. Khan, M. M. Saad, and D.
Kim, “Software-defined vehicular network (SDVN): A
survey on architecture and routing,” Journal of Systems
Architecture, vol. 114, p. 101 961, 2021, ISSN: 1383-
7621. DOI: https : / / doi . org / 10 . 1016 / j . sysarc . 2020 .
101961.
[6] S. Correia, A. Boukerche, and R. I. Meneguette,
“An Architecture for Hierarchical Software-Defined Ve-
hicular Networks,” IEEE Communications Magazine,
vol. 55, no. 7, pp. 80–86, 2017. DOI: 10.1109/MCOM.
2017.1601105.
[7] I. Ku, Y. Lu, M. Gerla, R. L. Gomes, F. Ongaro, and E.
Cerqueira, “Towards software-defined vanet: Architec-
ture and services,” in 2014 13th Annual Mediterranean
Ad Hoc Networking Workshop (MED-HOC-NET), 2014,
pp. 103–110. DOI: 10.1109/MedHocNet.2014.6849111.
[8] M. Haeberle, F. Heimgaertner, H. Loehr, et al., “Soft-
warization of automotive e/e architectures: A software-
defined networking approach,” in 2020 IEEE Vehicular
Networking Conference (VNC), 2020, pp. 1–8. DOI: 10.
1109/VNC51378.2020.9318389.
[9] Multi-source automotive software stacks white papers,
2023. [Online]. Available: https://insight.sbdautomotive.
com / rs / 164 - IYW- 366 / images / Multi - source % 5C %
20Automotive%5C%20Software%5C%20Stacks%5C%
20White%5C%20Papers.pdf.
[10] J. D’Ambrosio and G. Soremekun, “Systems engineer-
ing challenges and MBSE opportunities for automotive
system design,” in 2017 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), 2017,
pp. 2075–2080. DOI: 10.1109/SMC.2017.8122925.
[11] U. Pohlmann and M. H¨ uwe, “Model-driven allocation
engineering: specifying and solving constraints based
on the example of automotive systems,” Automated
Software Engg., vol. 26, no. 2, pp. 315–378, Jun. 2019,
ISSN: 0928-8910. DOI: 10.1007/s10515-018-0248-3.
[12] I. Al-Azzoni, J. Blank, and N. Petrovi´ c, “A Model-
Driven Approach for Solving the Software Component
Allocation Problem,” Algorithms, vol. 14, no. 12, 2021,
ISSN: 1999-4893. DOI: 10.3390/a14120354.
[13] F. Pan, J. Lin, M. Rickert, and A. Knoll, “Automated
Design Space Exploration for Resource Allocation in
Software-Defined Vehicles,” in 2023 IEEE Intelligent
Vehicles Symposium (IV), 2023, pp. 1–8. DOI: 10.1109/
IV55152.2023.10186605.
[14] S. Sommer, A. Camek, K. Becker, et al., “RACE: A
Centralized Platform Computer Based Architecture for
Automotive Applications,” in 2013 IEEE International
Electric Vehicle Conference (IEVC), 2013, pp. 1–6. DOI:
10.1109/IEVC.2013.6681152.
[15] K. Becker, J. Frtunikj, M. Felser, et al., “RACE RTE:
A runtime environment for robust fault-tolerant vehicle
functions,” in 3rd Workshop on Critical Automotive ap-
plications - Robustness & Safety (CARS), Paris, France,
Sep. 2015. [Online]. Available: https : / / hal . archives -
ouvertes.fr/hal-01192987.
[16] “Object Constraint Language.” (2024), [Online]. Avail-
able: https://www.omg.org/spec/OCL/2.4/About-OCL
(visited on 02/19/2024).
[17] D. Steinberg, F. Budinsky, M. Paternostro, and E.
Merks, EMF: Eclipse Modeling Framework, 2nd ed.
Boston, MA: Addison-Wesley, 2009, ISBN: 978-0-321-
33188-5.
[18] ISO 26262:2018, “Road vehicles – functional safety,”
International Organization for Standardization, Geneva,
Switzerland, Standard, Dec. 2018.
[19] ISO 23150:2023, “Road vehicles – Data communication
between sensors and data fusion unit for automated
driving functions,” International Organization for Stan-
dardization, Geneva, Switzerland, Standard, May 2023.
[20] “Vehicle Signal Specification (VSS) v.4.1,” COVESA,
Standard, 2023. [Online]. Available: https : / / covesa .
github.io/vehicle signal specification/.
[21] H. Askaripoor, M. H. Farzaneh, and A. Knoll, “A
Model-Based Approach to Facilitate Design of Homo-
geneous Redundant E/E Architectures,” in 2021 IEEE
International Intelligent Transportation Systems Con-
ference (ITSC), 2021, pp. 3426–3431. DOI: 10.1109/
ITSC48978.2021.9565115.
[22] F. Pan, J. Lin, M. Rickert, and A. Knoll, “Resource
Allocation in Software-Defined Vehicles: ILP Model
Formulation and Solver Evaluation,” in 2022 IEEE 25th
International Conference on Intelligent Transportation
Systems (ITSC), 2022, pp. 2577–2584. DOI: 10.1109/
ITSC55140.2022.9922526.
[23] S.-C. Kao and T. Krishna, “GAMMA: automating
the HW mapping of DNN models on accelerators
via genetic algorithm,” in Proceedings of the 39th
International Conference on Computer-Aided Design,
ser. ICCAD ’20, Virtual Event, USA: Association for
Computing Machinery, 2020, ISBN: 9781450380263.
DOI: 10.1145/3400302.3415639.
[24] N. Weng, N. Kumar, S. Dechu, and B. Soewito, “Map-
ping task graphs onto Network Processors using genetic
algorithm,” in 2008 IEEE/ACS International Conference
on Computer Systems and Applications, 2008, pp. 481–
488. DOI: 10.1109/AICCSA.2008.4493576.
[25] M. J. A. Schuetz, J. K. Brubaker, and H. G.
Katzgraber, “Combinatorial optimization with physics-
inspired graph neural networks,” Nature Machine Intel-
ligence, vol. 4, pp. 367–377, 2022. DOI: https://doi.org/
10.1038/s42256-022-00468-6.
[26] Q. Cappart, D. Ch´ etelat, E. Khalil, A. Lodi, C. Morris,
and P. Veliˇ ckovi´
c, Combinatorial optimization and rea-
soning with graph neural networks, 2022. arXiv: 2102.
09544 [cs.LG].
[27] K. Rusek, J. Su´ arez-Varela, P. Almasan, P. Barlet-
Ros, and A. Cabellos-Aparicio, “RouteNet: Leveraging
Graph Neural Networks for Network Modeling and
Optimization in SDN,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 10, pp. 2260–2270,
2020. DOI: 10.1109/JSAC.2020.3000405.
[28] A. Lee, M. Auli, and M. Ranzato, “Discriminative
Reranking for Neural Machine Translation,” in Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), C. Zong, F. Xia, W. Li, and
R. Navigli, Eds., Online: Association for Computational
Linguistics, Aug. 2021, pp. 7250–7264. DOI: 10.18653/
v1/2021.acl-long.563.
[29] Z. Li and T. Xie, Using LLM to select the right
SQL Query from candidates, 2024. arXiv: 2401.02115
[cs.CL].
[30] A. Ni, S. Iyer, D. Radev, et al., LEVER: Learning to
Verify Language-to-Code Generation with Execution,
2023. arXiv: 2302.08468 [cs.LG].
[31] Y. Li, Z. Lin, S. Zhang, et al., Making Large Lan-
guage Models Better Reasoners with Step-Aware Ver-
ifier, 2023. arXiv: 2206.02336 [cs.CL].
[32] Y. Dong, X. Jiang, Z. Jin, and G. Li, Self-collaboration
Code Generation via ChatGPT, 2023. arXiv: 2304 .
07590 [cs.SE].
[33] B. Chen, F. Zhang, A. Nguyen, et al., CodeT: Code
Generation with Generated Tests, 2022. arXiv: 2207.
10397 [cs.CL].
[34] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, Is Your Code
Generated by ChatGPT Really Correct? Rigorous Eval-
uation of Large Language Models for Code Generation,
2023. arXiv: 2305.01210 [cs.SE].
[35] N. Petrovic and I. Al-Azzoni, “Automated Approach
to Model-Driven Engineering Leveraging ChatGPT and
Ecore,” in 6th International Conference on Applied
Electromagnetics – PES 2023, 2023, pp. 166–168.
[36] C. Spiess, D. Gros, K. S. Pai, et al., Quality and
Trust in LLM-generated Code, 2024. arXiv: 2402.02047
[cs.SE].
[37] R. Mitchell and J. McKim, Design by contract, by
example, eng. Boston, MA: Addison Wesley Boston,
MA, 2002, ISBN: 9780201634600.
[38] S. R. Palmer and M. Felsing, A practical guide to
feature-driven development. Pearson Education, 2001.
[39] D. D. Walden, T. M. Shortell, G. J. Roedler, et al.,
INCOSE Systems Engineering Handbook: A Guide for
System Life Cycle Processes and Activities, en, 5th ed.,
INCOSE, Ed. New York: John Wiley & Sons Inc., Jun.
2023.
[40] Beck, Test Driven Development: By Example. USA:
Addison-Wesley Longman Publishing Co., Inc., 2002,
ISBN: 0321146530.
15 An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks
Shakil Ibne Ahsan, Phil Legg, S M Iftekharul Alam
https://arxiv.org/pdf/2312.04956
References
Akhunzada, A., Gani, A., Anuar, N.B., Abdelaziz, A., Khan, M.K., Hayat, A., Khan, S.U., 2016. Secure and dependable software-defined networks. J. Netw. Comput. Appl. 61, 199–221.
Alheeti,K.M.A.,Gruebler,A.,McDonald-Maier,K.,2017. Using discriminant analysis to detect intrusions in external communication for self-driving vehicles. Digit. Commun. Netw. 3, 180–187.
Ali Alheeti, K., Gruebler, A., McDonald-Maier, K., 2016. Intelligent intrusion detection of grey hole and rushing attacks in self-driving vehicular networks. Computers 5, 16.
Ali Alheeti, K.M., Gruebler, A., McDonald-Maier, K.D., 2015. An intrusion detection system against malicious attacks on the communication networkofdriverlesscars,in:2015 12th Annual IEEEConsumer Communications and Networking Conference (CCNC), IEEE. pp. 916–921.
Alladi,T.,Gera,B.,Agrawal,A.,Chamola,V.,Yu,F.R.,2021. DeepADV: A deep neural network framework for anomaly detection in VANETs. IEEE Trans. Veh. Technol. 70, 12013–12023.
Alsarhan,A.,Alauthman,M.,Alshdaifat,E.,Al-Ghuwairi,A.R.,Al-Dubai, A., 2021. Machine learning-driven optimization for SVM-based intrusion detection system in vehicular ad hoc networks. J. Ambient Intell. Humaniz. Comput. 14, 6113–6122.
Aneja, M.J.S., Bhatia, T., Sharma, G., Shrivastava, G., 2018. Artificial intelligence based intrusion detection system to detect flooding attack in VANETs,in:Handbook of Researchon Network Forensics and Analysis Techniques. IGI Global, pp. 87–100.
Bangui, H., Ge, M., Buhnova, B., 2022. A hybrid machine learning model for intrusion detection in VANET. Computing 104, 503–531.
Chekkouri, A.S., Ezzouhairi, A., Pierre, S., 2015. Connected vehicles in an intelligent transport system, in: Vehicular Communications and Networks. Elsevier, pp. 193–221.
Chen, Q., Jiang, D., Delgrossi, L., 2009. Ieee 1609.4 dsrc multi-channel operations and its implications on vehicle safety communications, in: 2009 IEEE Vehicular Networking Conference (VNC), IEEE, Tokyo, Japan.pp.16.doi:10.1109/VNC.2009.5416394.dateofConference:28-30 October 2009, DateAdded to IEEE Xplore: 18 February 2010. CISCO, 2022. Cisco encrypted traffic analytics white paper. https://tinyurl.com/2z544md8. Accessed: 2023-6-22.
Dorogush, A.S., Ershov, A., Vorobev, A., 2018. Catboost: Unbiased boosting with categorical features, in: Advances in Neural Information Processing Systems, NeurIPS. pp. 6638–6649.
Gad, A.R., Nashat, A.A., Barkat, T.M., 2021. Intrusion detection system using machine learning for vehicular adhocne tworks based on ToN-IoT dataset. IEEE Access 9, 142206–142217.
Gao, Y., Wu, H., Song, B., Jin, Y., Luo, X., Zeng, X., 2019. A distributed network intrusion detection system for distributed denial of service attacks in vehicular adhoc network. IEEE Access 7, 154560–154571.
Gruebler, A., McDonald-Maier, K.D., Ali Alheeti, K.M., 2015. An intrusion detection system against black hole attacks on the communication network of self-driving cars,in:2015 Sixth International Conferenceon Emerging Security Technologies (EST), IEEE. pp. 86–91.
van der Heijden, R.W., Lukaseder, T., Kargl, F., 2018. VeReMi: A dataset for comparable evaluation of misbehavior detection in VANETs, in: LectureNotesoftheInstituteforComputerSciences,SocialInformatics and Telecommunications Engineering. Springer International Publishing, Cham, pp. 318–337.
Huang, Y., Chen, H., Li, M., 2023. Federated learning for cybersecurity
in intelligent transportation systems. IEEE Transactions on Intelligent
Transportation Systems 24, 1152–1165.
Kim,M.,Jang,I.,Choo,S.,Koo,J.,Pack,S.,2017. Collaborativesecurity
attack detection in software-defined vehicular networks, in: 2017 19th
Asia-Pacific Network Operations and Management Symposium (AP-
NOMS), IEEE. pp. 19–24.
Kim, S., Park, J., Lee, D., 2022. Addressing false positives in vehicle Ad-
Hoc networks: A machine learning approach. Sensors 22, 1–15.
Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic
literature reviews in software engineering. Technical Report, Keele
University and University of Durham.
Ku, I., Lu, Y., Gerla, M., Gomes, R.L., Ongaro, F., Cerqueira, E., 2014.
Towards software-defined VANET: Architecture and services, in: 2014
13th Annual Mediterranean Ad Hoc Networking Workshop (MED-
HOC-NET), IEEE. pp. 103–110.
Kumar,N.,Singh,J.P.,Bali,R.S.,Misra,S.,Ullah,S.,2015. Anintelligent
clustering scheme for distributed intrusion detection in vehicular cloud
computing. Cluster Comput. 18, 1263–1283.
Liu, X., Yan, G., B. Rawat, D., Deng, S., 2014. Data mining intrusion
detection in vehicular ad hoc network. IEICE Trans. Inf. Syst. E97.D,
1719–1726.
Mejri, M.N., Ben-Othman, J., 2014. Detecting greedy behavior by linear
regression and watchdog in vehicular ad hoc networks, in: 2014 IEEE
Global Communications Conference, IEEE. pp. 5032–5037.
Misra, S., Krishna, P.V., Abraham, K.I., 2011. A stochastic learning
automata-based solution for intrusion detection in vehicular ad hoc
networks. Secur. Commun. Netw. 4, 666–677.
Polat, H., Turkoglu, M., Polat, O., 2020. Deep network approach with
stackedsparseautoencodersindetectionofDDoSattacksonSDN-based
VANET. IET Commun. 14,4089–4100.
Scarfone, K.A., Mell, P.M., 2007. Guide to intrusion detection and
prevention systems (IDPS). Technical Report. National Institute of
Standards and Technology. Gaithersburg, MD.
Scroxton, A., 2022. Researcher finds 10 vulnerabilities in cisco firewalls.
https://tinyurl.com/2ltaku9j. Accessed: 2023-6-22.
Sedjelmaci, H., Senouci, S.M., 2015. An accurate and efficient collab-
orative intrusion detection framework to secure vehicular networks.
Comput. Electr. Eng. 43, 33–47.
Sharma, A., 2021. Veremi-dataset-classification: Classification of all five
types of position falsification attack present in VeReMI dataset.
Sharma, S., Kaul, A., 2018. Hybrid fuzzy multi-criteria decision making
basedmulticlusterheaddolphinswarmoptimizedIDSforVANET.Veh.
Commun. 12, 23–38.
Shu, J., Zhou, L., Zhang, W., Du, X., Guizani, M., 2021. Collaborative
intrusiondetectionforVANETs:Adeeplearning-baseddistributedSDN
approach. IEEE Trans. Intell. Transp. Syst. 22, 4519–4530.
Singh, P.K., Kumar Jha, S., Nandi, S.K., Nandi, S., 2018. ML-based
approach to detect DDoS attack in V2I communication under SDN
architecture, in: TENCON 2018 - 2018 IEEE Region 10 Conference,
IEEE. pp. 0144–0149.
Tian, D., Wang, Y., Lu, G., Yu, G., 2010. A vehicular ad hoc networks
intrusiondetectionsystembasedonBUSNet,in:20102ndInternational
Conference on Future Computer and Communication, IEEE. pp. V1–
225–V1–229.
Türkoğlu,M.,Polat,H.,Koçak,C.,Polat,O.,2022. Recognitionofddosat-
tacksonsd-vanetbasedoncombinationofhyperparameteroptimization
and feature selection. Expert Syst. Appl. 203, 117500.
Wang, Z., Li, F., Zhang, Y., 2024. Enhancing intrusion detection in
VANETs through stacked ensemble learning. IEEE Access 12, 10123–
10135.
WHO, 2023. Road traffic injuries. https://www.who.int/health-topics/
road-safety. Accessed: 2023-6-22.
Wikipedia, 2023. Logistic function. https://tinyurl.com/2l2rw4so.
Yu, Y., Guo, L., Liu, Y., Zheng, J., Zong, Y., 2018. An efficient SDN-
based DDoS attack detection and rapid response platform in vehicular
networks. IEEE Access 6, 44570–44579.
Zeng, X., Xu, J., Wang, J., 2019a. Anomaly detection for vehicle Ad-Hoc
networks using convolutional neural networks. Journal of Network and
Computer Applications 129, 1–10.
Zeng, Y., Qiu, M., Ming, Z., Liu, M., 2018. Senior2Local: A machine
learning based intrusion detection method for VANETs, in: Lecture
Notes in Computer Science. Springer International Publishing, Cham,
pp. 417–426.
Zeng,Y.,Qiu,M.,Zhu,D.,Xue,Z.,Xiong,J.,Liu,M.,2019b. DeepVCM:
A deep learning based intrusion detection method in VANET, in: 2019
IEEE5thIntlConferenceonBigDataSecurityonCloud(BigDataSecu-
rity),IEEEIntlConferenceonHighPerformanceandSmartComputing,
(HPSC) and IEEE Intl Conference on Intelligent Data and Security
(IDS), IEEE. pp. 288–293.
Zheng, J., Wu, Q., 2016. Performance modeling and analysis of the IEEE
802.11pEDCAmechanismforVANET. IEEETrans.Veh.Technol.65,2673–2687.
16 Predictive Network Configuration with Hierarchical Spectral Clustering for Software Defined Vehicles
Pierre Laclau, Stéphane Bonnet, Bertrand Ducourthial, Xiaoting Li, Trista Lin
https://arxiv.org/pdf/2308.13215
REFERENCES
[1] M. Haeberle, F. Heimgaertner, H. Loehr, N. Nayak, D. Grewe, S. Schildt, and M. Menth, “Softwarization of Automotive E/E Architectures: A Software-Defined Networking Approach,” in 2020 IEEE Vehicular Networking Conference (VNC), Dec. 2020, pp. 1–8.
[2] X. Hu, K. Wang, X. Liu, Y. Sun, P. Li, and S. Guo, “Energy management for EV charging in software-defined green vehicle-to-grid network,” IEEE Communications Magazine, vol. 56, no. 5, pp. 156–163, 2018.
[3] C. Buckl, A. Camek, G. Kainz, C. Simon, L. Mercep, H. St¨ ahle, and Knoll, “The software car: Building ICT architectures for future electric vehicles,” in 2012 IEEE International Electric Vehicle Conference, 2012.
[4] V. Bandur, G. Selim, V. Pantelic, and M. Lawford, “Making the Case for Centralized Automotive E/E Architectures,” IEEE Transactions on Vehicular Technology, vol. PP, pp. 1–1, Jan. 2021.
[5] H. Kim, M. Choi, M. Kim, and S. Lee, “Development of an Ethernet-Based Heuristic Time-Sensitive Networking Scheduling Algorithm for Real-Time In-Vehicle Data Transmission,” Electronics, 2021.
[6] M. Rumez, D. Grimm, R. Kriesten, and E. Sax, “An Overview of Automotive Service-Oriented Architectures and Implications for Security Countermeasures,” IEEE Access, vol. 8, pp. 221 852–221 870, 2020.
[7] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, and H. Elbakoury, “Performance Comparison of IEEE 802.1 TSN Time Aware Shaper (TAS) and Asynchronous Traffic Shaper (ATS),” IEEE Access, vol. 7, pp. 44 165–44 181, 2019.
[8] A. C. T. dos Santos, B. Schneider, and V. Nigam, “TSNSCHED: Automated Schedule Generation for Time Sensitive Networking,” in 2019 Formal Methods in Computer Aided Design (FMCAD), 2019.
[9] S. Quinton, T. T. Bone, J. Hennig, M. Neukirchner, M. Negrean, and R. Ernst, “Typical worst case response-time analysis and its use in automotive network design,” in 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), Jun. 2014, pp. 1–6.
[10] J.-d. Park, B.-m. Cheoun, and J.-w. Jeon, “Worst-case analysis of ethernet AVB in automotive system,” in 2015 IEEE International Conference on Information and Automation, Aug. 2015, pp. 1696–1699.
[11] K. Halba, C. Mahmoudi, and E. Griffor, “Robust Safety for Autonomous Vehicles through Reconfigurable Networking,” Electronic Proceedings in Theoretical Computer Science, vol. 269, pp. 48–58, Apr. 2018.
[12] Z. Zhou, J. Lee, M. S. Berger, S. Park, and Y. Yan, “Simulating TSN traffic scheduling and shaping for future automotive Ethernet,” Journal of Communications and Networks, vol. 23, no. 1, pp. 53–62, Feb. 2021.
[13] N. Ayres, L. Deka, and D. Paluszczyszyn, “Continuous Automotive Software Updates through Container Image Layers,” Electronics, 2021.
[14] T. H¨ ackel, P. Meyer, F. Korf, and T. C. Schmidt, “Secure Time-Sensitive Software-Defined Networking in Vehicles,” IEEE Transactions on Vehicular Technology, vol. 72, no. 1, pp. 35–51, 2022.
[15] R. J. S´ anchez-Garc´ ıa, M. Fennelly, S. Norris, N. Wright, G. Niblo, J. Brodzki, and J. W. Bialek, “Hierarchical Spectral Clustering of Power Grids,” IEEE Transactions on Power Systems, 2014.
[16] Q. Zheng and D. B. Skillicorn, “Spectral Embedding of Directed Net- works,” in Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. New York, NY, USA: Association for Computing Machinery, 2015.
17 IMoG -- a methodology for modeling future microelectronic innovations
Oliver Klemp, Bernd Westphal, Stefan Puch
https://arxiv.org/pdf/2304.09110
References
- AUTOSAR GbR: AUTOSAR plattform standards, https://www.autosar.org/
- Broy, M., Gleirscher, M., Merenda, S., Wild, D., Kluge, P., Krenzer, W.: Toward a holistic and standardized automotive architecture description. Computer 42(12), 98–101 (2009). https://doi.org/10.1109/MC.2009.413
- CARIAD: Transforming automotive mobility.CARIAD Homepage,https://cariad.technology/de/en/company.html
- Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and Applications. ACM Press/Addison-Wesley Publishing Co. (2000)
- Debruyne, V., Simonot-Lion, F., Trinquet, Y.: EAST-ADL - an architecture de- scription language - validation and verification aspects. In: IFIP World Computer Congress, TC 2. pp. 181–195. Springer (2004)
- Fakih,M.,Klemp,O.,Puch,S.,Grüttner,K.:A modeling methodology for collaborative evaluation of future automotive innovations.SoftwareandSystemsModeling 20(5), 1587–1608 (2021). https://doi.org/10.1007/s10270-021-00864-3
- Gleirscher, M., Vogelsang, A., Fuhrmann, S.: A model-based approach to inno- vation management of automotive control systems. In: IWSPM. pp. 1–10 (2014). https://doi.org/10.1109/IWSPM.2014.6891062
- Infineon Technologies AG: Innovation in the automotive industry. Infineon Homepage, https://www.infineon.com/cms/de/about-infineon/press/pressreleases/2022/INFATV202201-039.html
- Jacobson, I.: Object-oriented software engineering: a use case driven approach. Pearson Education India (1993)
- Kang,K.C.,Cohen,S.G.,Hess,J.A.,Novak,W.E.,Peterson,A.S.:Feature-oriented domain analysis (FODA) feasibility study. Tech. rep., Carnegie-Mellon (1990)
- Kuhnert, F., Stürmer, C., Koster, A.: Five trends transforming the automotive industry (2018), https://www.pwc.at/de/publikationen/branchen-und-wirtschaftsstudien/eascy-five-trends-transforming-the-automotiveindustry_2018.pdf
- Nuseibeh, B.: Weaving together requirements and architectures. Computer 34(3), 115–119 (2001). https://doi.org/10.1109/2.910904
- Olsen, D.: The lean product playbook: How to innovate with minimum viable products and rapid customer feedback. John Wiley & Sons (2015)
- Pohl, K., Hönninger, H., Achatz, R., Broy, M.: Model-based engineering of embedded systems: The SPES 2020 methodology. Springer (2012). https://doi.org/10.1007/978-3-642-34614-9
- Robert Bosch GmbH: The software-defined vehicle. Bosch Homepage, https://www.bosch-mobility-solutions.com/en/mobility-topics/software-defined-vehicle/
Reference
Strategy to some summary and propose.
https://qiita.com/kaizen_nagoya/items/d36a9eba629022276918