Attacks on Self-Driving Cars and Their Countermeasures: A Survey
ABDULLAHI CHOWDHURY 1, (Member, IEEE), GOUR KARMAKAR JOARDER KAMRUZZAMAN 1, (Senior Member, IEEE), ALIREZA JOLFAEI 2, (Senior Member, IEEE), AND RAJKUMAR DAS 3
https://researchnow-admin.flinders.edu.au/ws/portalfiles/portal/52963912/Chowdhury_Attacks_P2020.pdf
REFERENCES
[1] X. Hu, Y.-C. Chiu, J. A. Villalobos, and E. Nava, ‘‘A sequential
decomposition framework and method for calibrating dynamic origin—
Destination demand in a congested network,’’ IEEE Trans. Intell. Transp.
Syst., vol. 18, no. 10, pp. 2790–2797, Feb. 2017.
[2] A. Y. and M. A., ‘‘Adaptive case management framework to develop case-
based emergency response system,’’ Int. J. Adv. Comput. Sci. Appl., vol. 8,
no. 4, pp. 57–66, 2017.
[3] J. K. Kim, R. Sharman, H. R. Rao, and S. Upadhyaya, ‘‘Efficiency
of critical incident management systems: Instrument development and
validation,’’ Decis. Support Syst., vol. 44, no. 1, pp. 235–250, Nov. 2007.
[4] S. Akhtar Ali Shah, H. Kim, S. Baek, H. Chang, and B. H. Ahn, ‘‘System
architecture of a decision support system for freeway incident manage-
ment in republic of korea,’’ Transp. Res. A, Policy Pract., vol. 42, no. 5,
pp. 799–810, Jun. 2008.
[5] Y. Wang, G. Tan, Y. Wang, and Y. Yin, ‘‘Perceptual control architecture
for cyber–physical systems in traffic incident management,’’ J. Syst.
Archit., vol. 58, no. 10, pp. 398–411, Nov. 2012.
[6] J. H. Lambert, A. I. Parlak, Q. Zhou, J. S. Miller, M. D. Fontaine,
T. M. Guterbock, J. L. Clements, and S. A. Thekdi, ‘‘Understanding and
managing disaster evacuation on a transportation network,’’ Accident
Anal. Prevention, vol. 50, pp. 645–658, Jan. 2013.
[7] Y. A. Rebeeh, S. Pokharel, G. M. Abdella, and A. S. Hammuda, ‘‘Dis-
aster management in industrial areas: Perspectives, challenges and future
research,’’ J. Ind. Eng. Manage., vol. 12, no. 1, pp. 133–153, 2019.
[8] H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri, and
A. Tuncer, ‘‘UAV-enabled intelligent transportation systems for the smart
city: Applications and challenges,’’ IEEE Commun. Mag., vol. 55, no. 3,
pp. 22–28, Mar. 2017.
[9] J.-A. Jang, K. Choi, and H. Cho, ‘‘A fixed sensor-based intersection col-
lision warning system in vulnerable line-of-sight and/or traffic-violation-
prone environment,’’ IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4,
pp. 1880–1890, Dec. 2012.
[10] A. Nikitas, E. T. Njoya, and S. Dani, ‘‘Examining the myths of con-
nected and autonomous vehicles: Analysing the pathway to a driverless
mobility paradigm,’’ Int. J. Automot. Technol. Manage., vol. 19, nos. 1–2,
pp. 10–30, 2019.
[11] J. Evans, ‘‘Governing cities for sustainability: A research agenda and
invitation,’’ Frontiers Sustain. Cities, vol. 1, p. 2, Jun. 2019.
[12] Y. Choi and S.-W. Rhee, ‘‘Current status and perspectives on recycling
of end-of-life battery of electric vehicle in korea (Republic of),’’ Waste
Manage., vol. 106, pp. 261–270, Apr. 2020.
[13] B. L. Bollinger, ‘‘The security and privacy in your car act: Will it actually
protect you,’’ North Carolina J. Law Technol., vol. 18, no. 5, p. 214, 2017.
[14] H. Lim and A. Taeihagh, ‘‘Autonomous vehicles for smart and sustainable
cities: An in-depth exploration of privacy and cybersecurity implica-
tions,’’ Energies, vol. 11, no. 5, p. 1062, Apr. 2018.
[15] N. Thompson, A. Mullins, and T. Chongsutakawewong, ‘‘Does high e-
government adoption assure stronger security? Results from a cross-
country analysis of australia and thailand,’’ Government Inf. Quart.,
vol. 37, no. 1, Jan. 2020, Art. no. 101408.
[16] N. Tan, ‘‘Electoral management of digital campaigns and disinformation
in east and southeast asia,’’ Election Law J., Rules, Politics, Policy, vol. 19,
no. 2, pp. 214–239, Jun. 2020.
[17] S. Feng, Y. Feng, X. Yan, S. Shen, S. Xu, and H. X. Liu, ‘‘Safety assess-
ment of highly automated driving systems in test tracks: A new frame-
work,’’ Accident Anal. Prevention, vol. 144, Sep. 2020, Art. no. 105664.
[18] M. C. Coelho and C. Guarnaccia, ‘‘Driving information in a transition to
a connected and autonomous vehicle environment: Impacts on pollutants,
noise and safety,’’ Transp. Res. Procedia, vol. 45, pp. 740–746, Jan. 2020.
[19] F. Sakiz and S. Sen, ‘‘A survey of attacks and detection mechanisms
on intelligent transportation systems: VANETs and IoV,’’ Ad Hoc Netw.,
vol. 61, pp. 33–50, Jun. 2017.
[20] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou, ‘‘A review on safety
failures, security attacks, and available countermeasures for autonomous
vehicles,’’ Ad Hoc Netw., vol. 90, Jul. 2019, Art. no. 101823.
VOLUME 8, 2020 207337
A. Chowdhury et al.: Attacks on Self-Driving Cars and Their Countermeasures: A Survey
[21] B. Schoettle and M. Sivak, ‘‘A survey of public opinion about autonomous
and self-driving vehicles in the US, the UK, and Australia,’’ Transp. Res.
Inst., Univ. Michigan, Ann Arbor, MI, USA, Tech. Rep. UMTRI-2014-
21, 2014.
[22] M. Teichmann, M. Weber, M. Zollner, R. Cipolla, and R. Urtasun, ‘‘Multi-
Net: Real-time joint semantic reasoning for autonomous driving,’’ in
Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018, pp. 1013–1020.
[23] L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and
A. Kovacs, ‘‘Enhancements of V2X communication in support of coop-
erative autonomous driving,’’ IEEE Commun. Mag., vol. 53, no. 12,
pp. 64–70, Dec. 2015.
[24] M. Porter, S. Dey, A. Joshi, P. Hespanhol, A. Aswani,
M. Johnson-Roberson, and R. Vasudevan, ‘‘Detecting deception attacks
on autonomous vehicles via linear time-varying dynamic watermarking,’’
2020, arXiv:2001.09859. [Online]. Available: http://arxiv.org/abs/2001.
09859
[25] R. Changalvala and H. Malik, ‘‘LiDAR data integrity verification for
autonomous vehicle,’’ IEEE Access, vol. 7, pp. 138018–138031, 2019.
[26] A. Ferdowsi, S. Ali, W. Saad, and N. B. Mandayam, ‘‘Cyber-physical
security and safety of autonomous connected vehicles: Optimal control
meets multi-armed bandit learning,’’ IEEE Trans. Commun., vol. 67,
no. 10, pp. 7228–7244, Oct. 2019.
[27] X. He, E. Hashemi, and K. H. Johansson, ‘‘Secure platooning
of autonomous vehicles under attacked GPS data,’’ 2020,
arXiv:2003.12975. [Online]. Available: http://arxiv.org/abs/2003.12975
[28] N. Bermad, S. Zemmoudj, and M. Omar, ‘‘Securing vehicular platoon-
ing against vehicle platooning disruption (VPD) attacks,’’ in Proc. 8th
Int. Conf. Perform. Eval. Modeling Wired Wireless Netw. (PEMWN),
Nov. 2019, pp. 1–6.
[29] A. Petrillo, A. Pescape, and S. Santini, ‘‘A secure adaptive control for
cooperative driving of autonomous connected vehicles in the presence
of heterogeneous communication delays and cyberattacks,’’ IEEE Trans.
Cybern., early access, Jan. 23, 2020, doi: 10.1109/TCYB.2019.2962601.
[30] T. Keijzer and R. M. G. Ferrari, ‘‘A sliding mode observer approach for
attack detection and estimation in autonomous vehicle platoons using
event triggered communication,’’ in Proc. IEEE 58th Conf. Decis. Control
(CDC), Dec. 2019, pp. 5742–5747.
[31] W. Jeon, Z. Xie, A. Zemouche, and R. Rajamani, ‘‘Simultaneous cyber-
attack detection and radar sensor health monitoring in connected ACC
vehicles,’’ IEEE Sensors J., early access, Jul. 24, 2020, doi: 10.1109/
JSEN.2020.3011698.
[32] Z. Li, Z. Li, and Y. Liu, ‘‘Resilient control design of the third-order
discrete-time connected vehicle systems against cyber-attacks,’’ IEEE
Access, vol. 8, pp. 157470–157481, 2020.
[33] B. L. Bollinger, ‘‘The security and privacy in your car act: Will it actually
protect you,’’ North Carolina J. Law Technol., vol. 18, no. 5, p. 214, 2017.
[34] S. Parkinson, P. Ward, K. Wilson, and J. Miller, ‘‘Cyber threats facing
autonomous and connected vehicles: Future challenges,’’ IEEE Trans.
Intell. Transp. Syst., vol. 18, no. 11, pp. 2898–2915, Nov. 2017.
[35] A. Humayed, J. Lin, F. Li, and B. Luo, ‘‘Cyber-physical sys-
tems security—A survey,’’ IEEE Internet Things J., vol. 4, no. 6,
pp. 1802–1831, May 2017.
[36] M. Buinevich and A. Vladyko, ‘‘Forecasting issues of wireless com-
munication Networks’ cyber resilience for an intelligent transportation
system: An overview of cyber attacks,’’ Information, vol. 10, no. 1, p. 27,
Jan. 2019.
[37] R. Gupta, S. Tanwar, N. Kumar, and S. Tyagi, ‘‘Blockchain-based
security attack resilience schemes for autonomous vehicles in industry
4.0: A systematic review,’’ Comput. Electr. Eng., vol. 86, Sep. 2020,
Art. no. 106717.
[38] F. Sommer, J. Dürrwang, and R. Kriesten, ‘‘Survey and classification
of automotive security attacks,’’ Information, vol. 10, no. 4, p. 148,
Apr. 2019.
[39] A. Bazzi, B. M. Masini, A. Zanella, and I. Thibault, ‘‘On the perfor-
mance of IEEE 802.11p and LTE-V2 V for the cooperative awareness
of connected vehicles,’’ IEEE Trans. Veh. Technol., vol. 66, no. 11,
pp. 10419–10432, Nov. 2017.
[40] W. Sun, J. Liu, and H. Zhang, ‘‘When smart wearables meet intelligent
vehicles: Challenges and future directions,’’ IEEE Wireless Commun.,
vol. 24, no. 3, pp. 58–65, Jun. 2017.
[41] A. M. Dahod, A. Schoener, K. Chowdhury, L. Schwartz, M. H. Harper,
K. E. Virgile, and A. Gibbs, ‘‘Adaptive intelligent routing in a communi-
cation system,’’ U.S. Patent 9 565 117, Feb. 7, 2017.
[42] Y. Tang, C. Zhang, R. Gu, P. Li, and B. Yang, ‘‘Vehicle detection and
recognition for intelligent traffic surveillance system,’’ Multimedia Tools
Appl., vol. 76, no. 4, pp. 5817–5832, Feb. 2017.
[43] R. Kolandaisamy, R. M. Noor, I. Ahmedy, I. Ahmad, M. R. Z’aba,
M. Imran, and M. Alnuem, ‘‘A multivariant stream analysis approach to
detect and mitigate DDoS attacks in vehicular ad hoc networks,’’ Wireless
Commun. Mobile Comput., vol. 2018, pp. 1–13, May 2018.
[44] T. Hoppe, S. Kiltz, and J. Dittmann, ‘‘Security threats to automotive can
networks–practical examples and selected short-term countermeasures,’’
in Proc. Int. Conf. Comput. Saf., Rel., Secur. Berlin, Germany: Springer,
2008, pp. 235–248.
[45] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, ‘‘Compre-
hensive experimental analyses of automotive attack surfaces,’’ in Proc.
20th USENIX Secur. Symp. (USENIX Secur.), vol. 4, 2011, pp. 447–462.
[46] J. Golson, ‘‘Car hackers demonstrate wireless attack on tesla model s,’’
Verge, vol. 19, 2016.
[47] R. S. Raw, M. Kumar, and N. Singh, ‘‘Security challenges, issues and
their solutions for VANET,’’ Int. J. Netw. Secur. Appl., vol. 5, no. 5, p. 95,
2013.
[48] T. Adachi, R. Hiura, T. Fukase, and T. Okazaki, ‘‘On-board unit and fault
determination method,’’ U.S. Patent 10 126 922, Nov. 13, 2018.
[49] S. Elitzur, V. Rosenband, and A. Gany, ‘‘On-board hydrogen production
for auxiliary power in passenger aircraft,’’ Int. J. Hydrogen Energy,
vol. 42, no. 19, pp. 14003–14009, May 2017.
[50] S. H. Bouk, S. H. Ahmed, D. Kim, and H. Song, ‘‘Named-data-
networking-based ITS for smart cities,’’ IEEE Commun. Mag., vol. 55,
no. 1, pp. 105–111, Jan. 2017.
[51] S. Mirri, C. Prandi, P. Salomoni, F. Callegati, A. Melis, and M. Prandini,
‘‘A service-oriented approach to crowdsensing for accessible smart
mobility scenarios,’’ Mobile Inf. Syst., vol. 2016, pp. 1–14, Jan. 2016.
[52] H. Vahdat-Nejad, A. Ramazani, T. Mohammadi, and W. Mansoor, ‘‘A sur-
vey on context-aware vehicular network applications,’’ Veh. Commun.,
vol. 3, pp. 43–57, Jan. 2016.
[53] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, ‘‘Lock it and still lose
it—On the (in) security of automotive remote keyless entry systems,’’ in
Proc. 25th USENIX Secur. Symp. (USENIX Secur.), 2016, pp. 1–16.
[54] D. D. Miller, ‘‘Systems and methods to detect vehicle queue lengths
of vehicles stopped at a traffic light signal,’’ U.S. Patent 15 091 170,
Jul. 20, 2017.
[55] R. I. Meneguette, R. De Grande, and A. A. Loureiro, Intelligent Transport
System in Smart Cities. Cham, Switzerland: Springer, 2018.
[56] K. Ansari, ‘‘Cloud computing on cooperative cars (C4S): An architecture
to support Navigation-as-a-Service,’’ in Proc. IEEE 11th Int. Conf. Cloud
Comput. (CLOUD), Jul. 2018, pp. 794–801.
[57] R. Zhang, F. Schmutz, K. Gerard, A. Pomini, L. Basseto, S. B. Hassen,
A. Jaiprakash, I. Ozgunes, A. Alarifi, H. Aldossary, I. AIKurtass,
O. Talabay, A. AlMhanna, S. AlGhamisi, M. AlSaleh, A. A. Biyabani,
K. Al-Ghoneim, and O. K. Tonguz, ‘‘Increasing traffic flows with DSRC
technology: Field trials and performance evaluation,’’ in Proc. IECON
44th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2018, pp. 6191–6196.
[58] K. Zheng, L. Hou, H. Meng, Q. Zheng, N. Lu, and L. Lei, ‘‘Soft-defined
heterogeneous vehicular network: Architecture and challenges,’’ IEEE
Netw., vol. 30, no. 4, pp. 72–80, Jul. 2016.
[59] T. Kryjak, M. Komorkiewicz, and M. Gorgon, ‘‘Real-time hardware–
software embedded vision system for ITS smart camera implemented in
zynq SoC,’’ J. Real-Time Image Process., vol. 15, no. 1, pp. 123–159,
Jun. 2018.
[60] V. Dhilip Kumar, P. Chyne, D. Kandar, and B. S. Paul, ‘‘Performance
analysis of hybrid WiMAX/DSRC scenarios for vehicular communica-
tion environment,’’ Microsyst. Technol., vol. 23, no. 9, pp. 4231–4236,
Sep. 2017.
[61] B. T. Sharef, R. A. Alsaqour, and M. Ismail, ‘‘Vehicular communication
ad hoc routing protocols: A survey,’’ J. Netw. Comput. Appl., vol. 40,
pp. 363–396, Apr. 2014.
[62] F. Cunha, A. Boukerche, L. Villas, A. Viana, and A. A. F. Loureiro, ‘‘Data
communication in VANETs: A survey, challenges and applications,’’
Netw., IEEE Commun. Surveys Tuts., 2014.
[63] M. Javed, E. Ben Hamida, and W. Znaidi, ‘‘Security in intelligent trans-
port systems for smart cities: From theory to practice,’’ Sensors, vol. 16,
no. 6, p. 879, Jun. 2016.
[64] M. A. Javed and E. B. Hamida, ‘‘On the interrelation of security, QoS,
and safety in cooperative ITS,’’ IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 7, pp. 1943–1957, Jul. 2017.
207338 VOLUME 8, 2020
A. Chowdhury et al.: Attacks on Self-Driving Cars and Their Countermeasures: A Survey
[65] S. Sharma and A. Kaul, ‘‘A survey on intrusion detection systems and
honeypot based proactive security mechanisms in VANETs and VANET
cloud,’’ Veh. Commun., vol. 12, pp. 138–164, Apr. 2018.
[66] G. Macher, E. Armengaud, E. Brenner, and C. Kreiner, ‘‘A review of
threat analysis and risk assessment methods in the automotive context,’’ in
Proc. Int. Conf. Comput. Saf., Rel., Secur. Cham, Switzerland: Springer,
2016, pp. 130–141.
[67] S. Gisdakis, M. Lagana, T. Giannetsos, and P. Papadimitratos, ‘‘SEROSA:
SERvice oriented security architecture for vehicular communications,’’ in
Proc. IEEE Veh. Netw. Conf., Dec. 2013, pp. 111–118.
[68] F. Han, L. Lin, and S. Li, ‘‘Invulnerability analysis in intelligent trans-
portation system,’’ Int. J. High Perform. Syst. Archit., vol. 7, no. 4,
pp. 197–203, 2017.
[69] Y. Sun, L. Wu, S. Wu, S. Li, T. Zhang, L. Zhang, J. Xu, Y. Xiong, and
X. Cui, ‘‘Attacks and countermeasures in the Internet of vehicles,’’ Ann.
Telecommun., vol. 72, nos. 5–6, pp. 283–295, 2017.
[70] I. Balabine and A. Velednitsky, ‘‘Method and system for confident
anomaly detection in computer network traffic,’’ U.S. Patent 9 843 488,
Dec. 12, 2017.
[71] A. Chowdhury, G. Karmakar, J. Kamruzzaman, and T. Saha, ‘‘Detect-
ing intrusion in the traffic signals of an intelligent traffic system,’’ in
Proc. Int. Conf. Inf. Commun. Secur. Cham, Switzerland: Springer, 2018,
pp. 696–707.
[72] J. Liu, J. Li, L. Zhang, F. Dai, Y. Zhang, X. Meng, and J. Shen, ‘‘Secure
intelligent traffic light control using fog computing,’’ Future Gener. Com-
put. Syst., vol. 78, pp. 817–824, Jan. 2018.
[73] I. Yaqoob, I. A. T. Hashem, A. Ahmed, S. M. A. Kazmi, and C. S. Hong,
‘‘Internet of Things forensics: Recent advances, taxonomy, requirements,
and open challenges,’’ Future Gener. Comput. Syst., vol. 92, pp. 265–275,
Mar. 2019.
[74] J. E. Siegel, D. C. Erb, and S. E. Sarma, ‘‘A survey of the connected
vehicle landscape—Architectures, enabling technologies, applications,
and development areas,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 8,
pp. 2391–2406, Oct. 2017.
[75] A. O. A. Zaabi, C. Y. Yeun, and E. Damiani, ‘‘Autonomous
vehicle security: Conceptual model,’’ in Proc. IEEE Transp. Elec-
trific. Conf. Expo, Asia–Pacific (ITEC Asia–Pacific), May 2019,
pp. 1–5.
[76] M. Hashem Eiza and Q. Ni, ‘‘Driving with sharks: Rethinking connected
vehicles with vehicle cybersecurity,’’ IEEE Veh. Technol. Mag., vol. 12,
no. 2, pp. 45–51, Jun. 2017.
[77] E. R. Teoh and D. G. Kidd, ‘‘Rage against the machine? Google’s self-
driving cars versus human drivers,’’ J. Saf. Res., vol. 63, pp. 57–60,
Dec. 2017.
[78] W. Qi, Q. Song, X. Wang, L. Guo, and Z. Ning, ‘‘SDN-enabled
social-aware clustering in 5G-VANET systems,’’ IEEE Access, vol. 6,
pp. 28213–28224, 2018.
[79] M. Baza, M. Nabil, M. M. E. A. Mahmoud, N. Bewermeier, K. Fidan,
W. Alasmary, and M. Abdallah, ‘‘Detecting sybil attacks using proofs of
work and location in VANETs,’’ IEEE Trans. Depend. Sec. Comput., early
access, May 11, 2020, doi: 10.1109/TDSC.2020.2993769.
[80] S. Alam, S. Sulistyo, I. W. Mustika, and R. Adrian, ‘‘Review of poten-
tial methods for handover decision in V2 V VANET,’’ in Proc. Int.
Conf. Comput. Sci., Inf. Technol., Electr. Eng. (ICOMITEE), Oct. 2019,
pp. 237–243.
[81] C. Schmittner, S. Chlup, A. Fellner, G. Macher, and E. Brenner, ‘‘Threat-
Get: Threat modeling based approach for automated and connected vehi-
cle systems,’’ in Proc. AmE Automot. Meets Electron., 11th GMM-Symp.,
2020, pp. 1–3.
[82] M. Dibaei, X. Zheng, K. Jiang, S. Maric, R. Abbas, S. Liu,
Y. Zhang, Y. Deng, S. Wen, J. Zhang, Y. Xiang, and S. Yu, ‘‘An
overview of attacks and defences on intelligent connected vehi-
cles,’’ 2019, arXiv:1907.07455. [Online]. Available: http://arxiv.org/abs/
1907.07455
[83] C. Schartmüller, K. Weigl, P. Wintersberger, A. Riener, and
M. Steinhauser, ‘‘Text comprehension: heads-up vs. Auditory displays:
Implications for a productive work environment in SAE level 3 automated
vehicles,’’ in Proc. 11th Int. Conf. Automot. User Interface Interact. Veh.
Appl., Sep. 2019, pp. 342–354.
[84] Y. Yao, B. Xiao, G. Wu, X. Liu, Z. Yu, K. Zhang, and X. Zhou,
‘‘Multi-channel based sybil attack detection in vehicular ad hoc networks
using RSSI,’’ IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 362–375,
Feb. 2019.
[85] C. Xu, M. Ma, X. Huang, and H. Bao, ‘‘A cross-domain group
authentication scheme for LTE–A based vehicular network,’’ in Proc.
IEEE 9th Int. Conf. Commun. Softw. Netw. (ICCSN), May 2017,
pp. 595–599.
[86] J. Lin, W. Yu, N. Zhang, X. Yang, and L. Ge, ‘‘Data integrity attacks
against dynamic route guidance in transportation-based cyber-physical
systems: Modeling, analysis, and defense,’’ IEEE Trans. Veh. Technol.,
vol. 67, no. 9, pp. 8738–8753, Sep. 2018.
[87] S. S. Albouq and E. M. Fredericks, ‘‘Lightweight detection and isolation
of black hole attacks in connected vehicles,’’ in Proc. IEEE 37th Int. Conf.
Distrib. Comput. Syst. Workshops (ICDCSW), Jun. 2017, pp. 97–104.
[88] M. Pawar and J. Agarwal, ‘‘A literature survey on security issues of wsn
and different types of attacks in network,’’ Indian J. Comput. Sci. Eng,
vol. 8, pp. 80–83, 2017.
[89] T. Zhang, H. Antunes, and S. Aggarwal, ‘‘Defending connected vehicles
against malware: Challenges and a solution framework,’’ IEEE Internet
Things J., vol. 1, no. 1, pp. 10–21, Feb. 2014.
[90] A. Greenberg. (2016). The Jeep Hackers are Back to Prove Car Hacking
Can Get Much Worse. Wired, August 1, 2016. Accessed: Aug. 15, 2017.
[Online]. Available: https://www.wired.com/2016/08/jeep-hackers-
return-high-speed-steering-a%cceleration-hacks/
[91] M. Schellekens, ‘‘Car hacking: Navigating the regulatory landscape,’’
Comput. Law Secur. Rev., vol. 32, no. 2, pp. 307–315, Apr. 2016.
[92] S. Zhang, J. Chen, F. Lyu, N. Cheng, W. Shi, and X. Shen, ‘‘Vehicular
communication networks in the automated driving era,’’ IEEE Commun.
Mag., vol. 56, no. 9, pp. 26–32, Sep. 2018.
[93] S. Nie, L. Liu, and Y. Du, ‘‘Free-fall: Hacking tesla from wireless to CAN
bus,’’ Briefing, Black Hat USA, vol. 25, pp. 1–16, Jul. 2017.
[94] M. Wolf, R. Lambert, T. Enderle, and A. Schmidt, ‘‘Wanna drive? Fea-
sible attack Paths and effective protection against ransomware in modern
vehicles,’’ in Proc. Embedded Secur. Cars Conf. (escar) Eur., 2017,
pp. 1–14.
[95] L. M. Cysneiros, M. Raffi, and J. C. Sampaio do Prado Leite, ‘‘Software
transparency as a key requirement for self-driving cars,’’ in Proc. IEEE
26th Int. Requirements Eng. Conf. (RE), Aug. 2018, pp. 382–387.
[96] I. Yaqoob, L. U. Khan, S. M. A. Kazmi, M. Imran, N. Guizani, and
C. S. Hong, ‘‘Autonomous driving cars in smart cities: Recent advances,
requirements, and challenges,’’ IEEE Netw., vol. 34, no. 1, pp. 174–181,
Jan. 2020.
[97] A. Hakkala and O. I. Heimo, ‘‘Automobile automation and lifecycle: How
digitalisation and security issues affect the car as a product and service,’’
in Proc. SAI Intell. Syst. Conf., Springer, 2019, pp. 121–137.
[98] K. Lim, K. M. Tuladhar, and H. Kim, ‘‘Detecting location spoofing
using ADAS sensors in VANETs,’’ in Proc. 16th IEEE Annu. Consum.
Commun. Netw. Conf. (CCNC), Jan. 2019, pp. 1–4.
[99] M. Pham and K. Xiong, ‘‘A survey on security attacks and
defense techniques for connected and autonomous vehicles,’’ 2020,
arXiv:2007.08041. [Online]. Available: http://arxiv.org/abs/2007.08041
[100] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, ‘‘Remote attacks on auto-
mated vehicles sensors: Experiments on camera and LiDAR,’’ in Proc.
Black Hat Eur., vol. 11, 2015, p. 2015.
[101] A. Taeihagh and H. S. M. Lim, ‘‘Governing autonomous vehicles: Emerg-
ing responses for safety, liability, privacy, cybersecurity, and industry
risks,’’ Transp. Rev., vol. 39, no. 1, pp. 103–128, Jan. 2019.
[102] Y. Zhao, ‘‘Telematics: Safe and fun driving,’’ IEEE Intell. Syst., vol. 17,
no. 1, pp. 10–14, Jan. 2002.
[103] M. Wolf and C. Paar, ‘‘Security requirements engineering in the
automotive domain: On specification procedures and implementational
aspects,’’ in Proc. SICHERHEIT Sicherheit, Schutz Und Zuverlaías-
sigkeit. Beitraíage der 4. Jahrestagung des Fachbereichs Sicherheit der
Gesellschaft Fuíar Informatik eV (GI), 2008, pp. 485–498.
[104] T. Zaidi and S. Faisal, ‘‘An overview: Various attacks in VANET,’’ in
Proc. 4th Int. Conf. Comput. Commun. Autom. (ICCCA), Dec. 2018,
pp. 1–6.
[105] M. Dikmen and C. M. Burns, ‘‘Autonomous driving in the real world:
Experiences with tesla autopilot and summon,’’ in Proc. 8th Int. Conf.
Automot. User Interface Interact. Veh. Appl. - Automotive’UI, 2016,
pp. 225–228.
[106] A. M. Nascimento, L. F. Vismari, P. S. Cugnasca, J. Camargo,
J. de Almeida, R. Inam, E. Fersman, A. Hata, and M. Marquezini, ‘‘Con-
cerns on the differences between ai and system safety mindsets impacting
autonomous vehicles safety,’’ in Proc. Int. Conf. Comput. Saf., Rel., Secur.
Cham, Switzerland: Springer, 2018, pp. 481–486.
VOLUME 8, 2020 207339
A. Chowdhury et al.: Attacks on Self-Driving Cars and Their Countermeasures: A Survey
[107] A. Herm, (2017). Assume Self-Driving Cars are a Hacker’s Dream? Think
Again. Guardian. Accessed: 2018. [Online]. Available: https://www.
theguardian.com/technology/2017/aug/30/self-driving-cars-hackers-
security.Zugegriffenam
[108] M. Cheah, S. A. Shaikh, O. Haas, and A. Ruddle, ‘‘Towards a systematic
security evaluation of the automotive Bluetooth interface,’’ Veh. Com-
mun., vol. 9, pp. 8–18, Jul. 2017.
[109] S. Prevost and H. Kettani, ‘‘On data privacy in modern personal vehicles,’’
in Proc. 4th Int. Conf. Big Data Internet Things, Oct. 2019, pp. 1–4.
[110] J. Stewart, ‘‘Tesla’s autopilot was involved in another deadly car crash,’’
Wired, vol. 3, p. 30, Mar. 2018.
[111] J. Petit and S. E. Shladover, ‘‘Potential cyberattacks on automated vehi-
cles,’’ IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 546–556,
Apr. 2015.
[112] S. Garfinkel. (2017). Hackers Are the Real Obstacle for Self-Driving
Vehicles. MIT Technology Review. Accessed: Oct. 16, 2020. [Online].
Available: https://www.technologyreview.com/s/608618/hackers-are-
the-real-obstacle-for-self-driving-vehicles/
[113] F. Sun, T. Jones, and S. Lennox, ‘‘Enhancing autonomous vehicle
perception with off-vehicle collected data,’’ U.S. Patent 10 101 745,
Oct. 16, 2018.
[114] S. Bruneel, ‘‘The fast and furiously approaching need for legal regulation
of autonomous driving,’’ Brigham Young Univ. Prelaw Rev., vol. 30, no. 1,
p. 7, 2016.
[115] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, ‘‘Exper-
imental security analysis of a modern automobile,’’ in Proc. IEEE Symp.
Secur. Privacy, May 2010, pp. 447–462.
[116] L. ben Othmane, L. Dhulipala, M. Abdelkhalek, M. Govindarasu, and
N. Multari, ‘‘Detection of injection attacks in in-vehicle networks,’’ in
Proc. Electr. Comput. Eng. Conf. Papers, Posters Presentations, 2019.
[117] C. Miller and C. Valasek, ‘‘Remote exploitation of an unaltered passenger
vehicle,’’ Black Hat USA, vol. 2015, p. 91, Aug. 2015.
[118] D. Lodge, ‘‘Hacking the mitsubishi outlander PHEV hybrid,’’
PenTestPartners, vol. 5, Jun. 2016. Accessed: Oct. 16, 2020. [Online].
Available: https://www.pentestpartners.com/security-blog/hacking-the-
mitsubishi-outlander-phev-hybrid-suv/
[119] K. Ste¸piń and A. Poniszewska-Marańda, ‘‘Security solution methods in
the vehicular ad-hoc networks,’’ in Proc. 17th Int. Conf. Adv. Mobile
Comput. Multimedia, Dec. 2019, pp. 127–135.
[120] M. Hirz and B. Walzel, ‘‘Sensor and object recognition technologies for
self-driving cars,’’ Comput.-Aided Des. Appl., vol. 15, no. 4, pp. 501–508,
Jul. 2018.
[121] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, ‘‘Deep learning
sensor fusion for autonomous vehicle perception and localization: A
review,’’ Sensors, vol. 20, no. 15, p. 4220, Jul. 2020.
[122] R. Islam and R. U. D. Refat, ‘‘Improving CAN bus security by assigning
dynamic arbitration IDs,’’ J. Transp. Secur., vol. 13, nos. 1–2, pp. 19–31,
Jun. 2020.
[123] C. Zhang, R. Lu, X. Lin, P.-H. Ho, and X. Shen, ‘‘An efficient identity-
based batch verification scheme for vehicular sensor networks,’’ in Proc.
IEEE INFOCOM 27th Conf. Comput. Commun., Apr. 2008, pp. 246–250.
[124] S. P. Sandford and D. F. Pierrottet, ‘‘Navigation system for GPS denied
environments,’’ U.S. Patent 15 932 639, Oct. 3, 2019.
[125] T. Toyama, H. Oguma, T. Matsumoto, H. Gotoh, and T. Moriya, ‘‘System
and method for detecting attack when sensor and traffic information are
inconsistent,’’ U.S. Patent 16 507 157, Oct. 31, 2019.
[126] S. Mookherji and S. Sankaranarayanan, ‘‘Traffic data classification for
security in iot-based road signaling system,’’ in Soft Comput. Data Ana-
lytics. Singapore: Springer, 2019, pp. 589–599.
[127] D. B. Rawat, G. Yan, B. B. Bista, and M. C. Weigle, ‘‘Trust on the security
of wireless vehicular ad-hoc networking,’’ Ad Hoc Sensor Wireless Netw.,
vol. 24, nos. 3–4, pp. 283–305, 2015.
[128] M. Jagielski, N. Jones, C.-W. Lin, C. Nita-Rotaru, and S. Shiraishi,
‘‘Threat detection for collaborative adaptive cruise control in connected
cars,’’ in Proc. 11th ACM Conf. Secur. Privacy Wireless Mobile Netw.,
Jun. 2018, pp. 184–189.
[129] B. G. Stottelaar, ‘‘Practical cyber-attacks on autonomous vehicles,’’
M.S. thesis, Dept. Elect. Eng., Math. Comput. Sci., Univ. Twente,
Enschede, The Netherlands, 2015.
[130] P. Nayak, R. S. U. Suseela, and V. Trivedi, ‘‘A review on DoS attack for
WSN: Defense and detection mechanisms,’’ in Proc. Int. Conf. Energy,
Commun., Data Anal. Soft Comput. (ICECDS), Aug. 2017, pp. 453–461.
[131] C. Sun, J. Liu, X. Xu, and J. Ma, ‘‘A privacy-preserving mutual
authentication resisting DoS attacks in VANETs,’’ IEEE Access, vol. 5,
pp. 24012–24022, 2017.
[132] Y. Liu, S. Li, Q. Fu, and Z. Liu, ‘‘Impact assessment of GNSS spoofing
attacks on INS/GNSS integrated navigation system,’’ Sensors, vol. 18,
no. 5, p. 1433, May 2018.
[133] J. T. Curran and A. Broumendan, ‘‘On the use of low-cost IMUs for
GNSS spoofing detection in vehicular applications,’’ in Proc. ITSNT,
2017, pp. 1–8.
[134] H. Tan, D. Choi, P. Kim, S. Pan, and I. Chung, ‘‘Comments on ‘dual
authentication and key management techniques for secure data transmis-
sion in vehicular ad hoc networks,’’’ IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 7, pp. 2149–2151, Nov. 2017.
[135] H. Hasrouny, A. E. Samhat, C. Bassil, and A. Laouiti, ‘‘VANet security
challenges and solutions: A survey,’’ Veh. Commun., vol. 7, pp. 7–20,
Jan. 2017.
[136] T. Humphreys, Statement on the Vulnerability of Civil Unmanned Aerial
Vehicles and Other Systems to Civil GPS Spoofing. Austin, TX, USA:
Univ. Texas at Austin, Jul. 2012, pp. 1–16.
[137] D. P. Shepard, T. E. Humphreys, and A. A. Fansler, ‘‘Evaluation of the
vulnerability of phasor measurement units to GPS spoofing attacks,’’ Int.
J. Crit. Infrastruct. Protection, vol. 5, nos. 3–4, pp. 146–153, Dec. 2012.
[138] B. W. O’Hanlon, M. L. Psiaki, J. A. Bhatti, D. P. Shepard, and
T. E. Humphreys, ‘‘Real-time GPS spoofing detection via correlation of
encrypted signals,’’ Navigation, vol. 60, no. 4, pp. 267–278, Dec. 2013.
[139] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Hanlon,
and P. M. Kintner, ‘‘Assessing the spoofing threat: Development of a
portable GPS civilian spoofer,’’ in Proc. Radionavigation Lab. Conf.,
2008, pp. 1–12.
[140] B. DeBruhl, S. Weerakkody, B. Sinopoli, and P. Tague, ‘‘Is your commute
driving you crazy?: a study of misbehavior in vehicular platoons,’’ in
Proc. 8th ACM Conf. Secur. Privacy Wireless Mobile Netw. - WiSec, 2015,
p. 22.
[141] J. Liu, D. Ma, A. Weimerskirch, and H. Zhu, ‘‘A functional co-design
towards safe and secure vehicle platooning,’’ in Proc. 3rd ACM Workshop
Cyber-Phys. Syst. Secur. - CPSS, 2017, pp. 81–90.
[142] K. Wang, L. Wang, and M. Cui, ‘‘Trajectory tracking and recovery attacks
in VANET systems,’’ Int. J. Commun. Syst., vol. 31, no. 17, Nov. 2018,
Art. no. e3797.
[143] T. Ort, L. Paull, and D. Rus, ‘‘Autonomous vehicle navigation in rural
environments without detailed prior maps,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2018, pp. 2040–2047.
[144] H. T. Cheng, H. Shan, and W. Zhuang, ‘‘Infotainment and road safety
service support in vehicular networking: From a communication per-
spective,’’ Mech. Syst. Signal Process., vol. 25, no. 6, pp. 2020–2038,
Aug. 2011.
[145] I. Blayvas, R. Fridental, and S. Da, ‘‘Systems and methods for
autonomous vehicle navigation,’’ U.S. Patent 10 002 471, Jun. 19, 2018.
[146] F. D. Garcia, G. de Koning Gans, R. Verdult, and M. Meriac, ‘‘Disman-
tling iclass and iclass elite,’’ in Proc. Eur. Symp. Res. Comput. Secur.
Berlin, Germany: Springer, 2012, pp. 697–715.
[147] P. Soni and A. Sharma, ‘‘Sybil node detection and prevention approach
on physical location in VANET,’’ Int. J. Comput. Appl., vol. 128, no. 16,
pp. 38–42, Oct. 2015.
[148] S. S. Tangade and S. S. Manvi, ‘‘A survey on attacks, security and trust
management solutions in VANETs,’’ in Proc. 4th Int. Conf. Comput.,
Commun. Netw. Technol. (ICCCNT), Jul. 2013, pp. 1–6.
[149] M. Bharat, K. S. Sree, and T. M. Kumar, ‘‘Authentication solution for
security attacks in VANETs,’’ Int. J. Adv. Res. Comput. Commun. Eng.,
vol. 3, no. 8, pp. 7661–7664, 2014.
[150] Q. Jiang, N. Zhang, J. Ni, J. Ma, X. Ma, and K.-K.-R. Choo, ‘‘Unified bio-
metric privacy preserving three-factor authentication and key agreement
for cloud-assisted autonomous vehicles,’’ IEEE Trans. Veh. Technol.,
vol. 69, no. 9, pp. 9390–9401, Sep. 2020.
[151] A. Faisal, T. Yigitcanlar, M. Kamruzzaman, and A. Paz, ‘‘Mapping two
decades of autonomous vehicle research: A systematic scientometric
analysis,’’ J. Urban Technol., vol. 27, pp. 1–30, Aug. 2020.
[152] J. M. Sullivan, M. J. Flannagan, A. K. Pradhan, and S. Bao, ‘‘Literature
review of behavioral adaptations to advanced driver assistance systems,’’
in Proc. TRIS ITRD Database, 2016, pp. 1–55.
[153] K. Suzuki, T. Asao, J.-I. Hayashi, and Y. Miichi, ‘‘Safety evaluation of
advanced driver assistance systems as human-machine systems,’’ Int. J.
Automot. Eng., vol. 8, no. 4, pp. 163–170, 2017.
207340 VOLUME 8, 2020
A. Chowdhury et al.: Attacks on Self-Driving Cars and Their Countermeasures: A Survey
[154] S. K. Erskine and K. M. Elleithy, ‘‘Real-time detection of DoS attacks
in IEEE 802.11p using fog computing for a secure intelligent vehicular
network,’’ Electronics, vol. 8, no. 7, p. 776, Jul. 2019.
[155] M. Islam, M. Chowdhury, H. Li, and H. Hu, ‘‘Cybersecurity attacks in
vehicle-to-infrastructure applications and their prevention,’’ Transp. Res.
Rec., J. Transp. Res. Board, vol. 2672, no. 19, pp. 66–78, Dec. 2018.
[156] D. Elliott, W. Keen, and L. Miao, ‘‘Recent advances in connected and
automated vehicles,’’ J. Traffic Transp. Eng. (English Ed.), vol. 6, no. 2,
pp. 109–131, Apr. 2019.
[157] V. Linkov, P. Zámečník, D. Havlíčková, and C.-W. Pai, ‘‘Human factors
in the cybersecurity of autonomous vehicles: Trends in current research,’’
Frontiers Psychol., vol. 10, p. 995, May 2019.
[158] R. Hussain and S. Zeadally, ‘‘Autonomous cars: Research results, issues,
and future challenges,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1275–1313, 2nd Quart., 2019.
[159] M. Guri and D. Bykhovsky, ‘‘AIR-jumper: Covert air-gap exfiltra-
tion/infiltration via security cameras & infrared (IR),’’ Comput. Secur.,
vol. 82, pp. 15–29, May 2019.
[160] B. Sheehan, F. Murphy, M. Mullins, and C. Ryan, ‘‘Connected and
autonomous vehicles: A cyber-risk classification framework,’’ Transp.
Res. A, Policy Pract., vol. 124, pp. 523–536, Jun. 2019.
[161] A. Costin, ‘‘Security of CCTV and video surveillance systems: Threats,
vulnerabilities, attacks, and mitigations,’’ in Proc. 6th Int. Workshop
Trustworthy Embedded Devices - TrustED, 2016, pp. 45–54.
[162] B. Cusack and Z. Tian, ‘‘Evaluating ip surveillance camera vulner-
abilities,’’ in Proc. 15th Austral. Inf. Secur. Manage. Conf., 2017,
pp. 1–9.
[163] J. Raiyn, ‘‘Data and cyber security in autonomous vehicle networks,’’
Transp. Telecommun. J., vol. 19, no. 4, pp. 325–334, Dec. 2018.
[164] A.-S. K. Pathan, Security of Self-Organizing Networks: MANET, WSN,
WMN, VANET. Boca Raton, FL, USA: CRC Press, 2016.
[165] O. Punal, C. Pereira, A. Aguiar, and J. Gross, ‘‘Experimental characteri-
zation and modeling of RF jamming attacks on VANETs,’’ IEEE Trans.
Veh. Technol., vol. 64, no. 2, pp. 524–540, Feb. 2015.
[166] K. Babber and R. Randhawa, ‘‘Cross-layer designs in wireless sensor
networks,’’ in Computational Intelligence in Sensor Networks. Berlin,
Germany: Springer, 2019, pp. 141–166.
[167] A. Chowdhury, ‘‘Recent cyber security attacks and their mitigation
approaches–an overview,’’ in Proc. Int. Conf. Appl. Techn. Inf. Secur.
Singapore: Springer, 2016, pp. 54–65.
[168] M. A. Jan, P. Nanda, X. He, and R. P. Liu, ‘‘A sybil attack detection
scheme for a forest wildfire monitoring application,’’ Future Gener.
Comput. Syst., vol. 80, pp. 613–626, Mar. 2018.
[169] S. Chaba, R. Kumar, R. Pant, and M. Dave, ‘‘Secure and effi-
cient key delivery in VANET using cloud and fog computing,’’ in
Proc. Int. Conf. Comput., Commun. Electron. (Comptelix), Jul. 2017,
pp. 27–31.
[170] A. Muhamad and M. Elhadef, ‘‘Sybil attacks in intelligent vehicular
ad hoc networks: A review,’’ in Advanced Multimedia and Ubiquitous
Engineering. Singapore: Springer, 2018, pp. 547–555.
[171] Z. A. Abdulkader, A. Abdullah, M. T. Abdullah, and Z. A. Zukarnain,
‘‘Malicious node identification routing and protection mechanism for
vehicular ad-hoc network against various attacks,’’ Int. J. Netw. Virtual
Organisations, vol. 19, nos. 2–4, pp. 153–175, 2018.
[172] P. Agarwal, ‘‘Technical review on different applications, challenges and
security in vaNet,’’ J. Multimedia Technol. Recent Adv, vol. 4, no. 3,
pp. 21–30, 2017.
[173] Deeksha, A. Kumar, and M. Bansal, ‘‘A review on VANET security
attacks and their countermeasure,’’ in Proc. 4th Int. Conf. Signal Process.,
Comput. Control (ISPCC), Sep. 2017, pp. 580–585.
[174] M. Jain and R. Saxena, ‘‘VaNet: Security attacks, solution and simula-
tion,’’ in Proc. 2nd Int. Conf. Comput. Intell. Inform. Singapore: Springer,
2018, pp. 457–466.
[175] E. S. Stolyarova, D. M. Shiryaev, A. G. Vladyko, and M. V. Buinevich,
‘‘VANET/ITS cybersecurity threats: Analysis, categorization and fore-
casting,’’ in Proc. IEEE Conf. Russian Young Researchers Electr. Elec-
tron. Eng. (EIConRus), Jan. 2018, pp. 136–141.
[176] M. A. H. Al Junaid, A. Syed, M. N. M. Warip, K. N. F. K. Azir, and
N. H. Romli, ‘‘Classification of security attacks in vanet: A review of
requirements and perspectives,’’ in Proc. MATEC Web Conf., vol. 150.
Les Ulis, France: EDP Sciences, 2018, Art. no. 06038.
[177] W.-H. Ko, B. Satchidanandan, and P. R. Kumar, ‘‘Dynamic
watermarking-based defense of transportation cyber-physical systems,’’
ACM Trans. Cyber-Phys. Syst., vol. 4, no. 1, pp. 1–21, Jan. 2020.
[178] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen,
K. Fu, and Z. M. Mao, ‘‘Adversarial sensor attack on LiDAR-based
perception in autonomous driving,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2019, pp. 2267–2281.
[179] B. Nassi, D. Nassi, R. Ben-Netanel, Y. Mirsky, O. Drokin, and Y. Elovici,
‘‘Phantom of the ADAS: Phantom attacks on driver-assistance systems,’’
IACR Cryptol. ePrint Arch., vol. 2020, p. 85, Oct. 2020.
[180] A. Hafeez, K. Topolovec, and S. Awad, ‘‘ECU fingerprinting through
parametric signal modeling and artificial neural networks for in-vehicle
security against spoofing attacks,’’ in Proc. 15th Int. Comput. Eng. Conf.
(ICENCO), Dec. 2019, pp. 29–38.
[181] C. Gutierrez, M. Juliato, S. Ahmed, and M. Sastry, ‘‘Detecting attacks against safety-critical ADAS based on in-vehicle network message pat- terns,’’ in Proc. 49th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. Ind. Track, Jun. 2019, pp. 9–12.
[182] M. M. Rana, ‘‘IoT-based electric vehicle state estimation and control algorithms under cyber attacks,’’ IEEE Internet Things J., vol. 7, no. 2, pp. 874–881, Feb. 2020.
[183] Q. Liu, Y. Mo, X. Mo, C. Lv, E. Mihankhah, and D. Wang, ‘‘Secure pose estimation for autonomous vehicles under cyber attacks,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2019, pp. 1583–1588.
[184] J. E. Giti, A. Sakzad, B. Srinivasan, J. Kamruzzaman, and R. Gaire, ‘‘Secrecy capacity against adaptive eavesdroppers in a random wireless network using friendly jammers and protected zone,’’ J. Netw. Comput. Appl., vol. 165, Sep. 2020, Art. no. 102698.
[185] A. Qayyum, M. Usama, J. Qadir, and A. Al-Fuqaha, ‘‘Securing connected & autonomous vehicles: Challenges posed by adversarial machine learning and the way forward,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 998–1026, 2nd Quart., 2020.
[186] M. E. Khoda, T. Imam, J. Kamruzzaman, I. Gondal, and A. Rahman, ‘‘Robust malware defense in industrial IoT applications using machine learning with selective adversarial samples,’’ IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 4415–4424, Aug. 2019.
[187] H. K. Kalutarage, M. O. Al-Kadri, M. Cheah, and G. Madzudzo, ‘‘Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus,’’ in Proc. ACM Comput. Sci. Cars Symp. CSCS, 2019, pp. 1–8.
[188] W. B. Rouse, ‘‘The systems, man, and cybernetics of driverless cars: Challenges and opportunities for the SMCS,’’ IEEE Syst., Man, Cybern. Mag., vol. 3, no. 3, pp. 6–8, Jul. 2017.
[189] A. Wolfe, ‘‘Unstoppable the gap between public safety and traffic safety in the age of driverless cars,’’ Naval Postgraduate School Monterey, Washington, DC, USA, Reduction Project 0704-0188, 2017.
[190] S. Dadras and C. Winstead, Cybersecurity of Autonomous Vehicle Platooning. Logan, Utah: Utah State Univ., 2017.
[191] G. K. Rajbahadur, A. J. Malton, A. Walenstein, and A. E. Hassan, ‘‘A survey of anomaly detection for connected vehicle cybersecurity and safety,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018, pp. 421–426.
[192] I. Autonomous Vehicle Computing Consortium. (2019). Tackling the Complexities and Obstacles Necessary for Realizing the Development and Volume Production of Safe and Affordable Autonomous Vehicles. Accessed: Aug. 6, 2020. [Online]. Available: https://www.avcconsortium.org
[193] D. Etherington. (2019). Toyota, Gm, Nvidia, Bosch and Others Form New Autonomous Driving Tech Consortium. Accessed: Aug. 6, 2020. [Online]. Available: https://tcrn.ch/3mndbJT
Ref.
CAN FD and CAN XL onn arXiv
https://qiita.com/kaizen_nagoya/items/d8efb0da53cd3456f735
CAN FD & CAN XL on arXiv references
https://qiita.com/kaizen_nagoya/items/7df86c66084372a96f1d
CAN FD & CAN XL on arXiv references name order
https://qiita.com/kaizen_nagoya/items/ec5e4e4491228db534c0