0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

phase velocity @ arXiv

1 Enhanced Electromagnetic Memory, Jann Zosso

Reference

[1] Y. B. Zel’dovich and A. G. Polnarev, “Radiation of gravitational waves by a cluster of superdense stars,” Sov. Astron. 18 (1974) 17.
[2] V. B. Braginsky and L. P. Grishchuk, “Kinematic Resonance and Memory Effect in Free Mass Gravitational Antennas,” Sov. Phys. JETP 62 (1985) 427–430.
[3] V. Braginsky and K. Thorne, “Gravitational-wave bursts with memory and experimental prospects,” Nature 327 (1987) 123–125.
[4] D. Christodoulou, “Nonlinear nature of gravitation and gravitational wave experiments,” Phys. Rev. Lett. 67 (1991) 1486–1489.
[5] L. Blanchet and T. Damour, “Hereditary effects in gravitational radiation,” Phys. Rev. D 46 (1992) 4304–4319.
[6] J. Frauendiener, “Note on the memory effect,” Class. Quant. Grav. 9 (06, 1992) 1639–1641.
[7] K. S. Thorne, “Gravitational-wave bursts with memory: The Christodoulou effect,” Phys. Rev. D 45 no. 2, (1992) 520–524.
[8] A. G. Wiseman and C. M. Will, “Christodoulou’s nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation,” Phys. Rev. D 44 (Nov, 1991) R2945–R2949.
[9] M. Favata, “Nonlinear gravitational-wave memory from binary black hole mergers,” Astrophys. J. Lett. 696 (2009) L159–L162, arXiv:0902.3660 [astro-ph.SR].
[10] M. Favata, “The gravitational-wave memory effect,” Class. Quant. Grav. 27 (2010) 084036, arXiv:1003.3486 [gr-qc].
[11] A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft Theorems,” JHEP 01 (2016) 086, arXiv:1411.5745 [hep-th].
[12] L. Bieri, D. Garfinkle, and S.-T. Yau, “Gravitational Waves and Their Memory in General Relativity,” arXiv:1505.05213 [gr-qc].
[13] S. Pasterski, A. Strominger, and A. Zhiboedov, “New Gravitational Memories,” JHEP 12 (2016) 053, arXiv:1502.06120 [hep-th].
[14] D. Garfinkle, “Gravitational wave memory and the wave equation,” Class. Quant. Grav. 39 no. 13, (2022) 135010, arXiv:2201.05543 [gr-qc].
[15] J. Zosso, “Continuing Isaacson’s Legacy: A general metric theory perspective on gravitational memory and the non-linearity of gravity,” in 59th Rencontres de Moriond on Gravitation: Moriond 2025 Gravitation. 5, 2025. arXiv:2505.17603 [gr-qc].
[16] H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21–52.
[17] R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A 270 (1962) 103–126.
[18] A. Ashtekar, “Geometry and Physics of Null Infinity,” arXiv:1409.1800 [gr-qc].
[19] G. Comp`ere, R. Oliveri, and A. Seraj, “The Poincar´e and BMS flux-balance laws with application to binary systems,” JHEP 10 (2020) 116, arXiv:1912.03164 [gr-qc].
[20] S. Weinberg, “Infrared Photons and Gravitons,” Phys. Rev. 140 (Oct, 1965) B516–B524.
[21] L. Heisenberg, N. Yunes, and J. Zosso, “Gravitational wave memory beyond general relativity,” Phys. Rev. D 108 no. 2, (2023) 024010, arXiv:2303.02021 [gr-qc].
[22] J. Zosso, Probing Gravity - Fundamental Aspects of Metric Theories and their Implications for Tests of General Relativity. PhD thesis, Zurich, ETH, 2024. arXiv:2412.06043 [gr-qc].
[23] L. Bieri and D. Garfinkle, “An electromagnetic analogue of gravitational wave memory,” Class. Quant. Grav. 30 (2013) 195009, arXiv:1307.5098 [gr-qc].
[24] T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless QED,” JHEP 10 (2014) 112, arXiv:1407.3789 [hep-th].
[25] S. Pasterski, “Asymptotic Symmetries and Electromagnetic Memory,” JHEP 09 (2017) 154, arXiv:1505.00716 [hep-th].
[26] A. M. Grant and D. A. Nichols, “Outlook for detecting the gravitational-wave displacement and spin memory effects with current and future gravitational-wave detectors,” Phys. Rev. D 107 no. 6, (2023) 064056, arXiv:2210.16266 [gr-qc]. [Erratum: Phys.Rev.D 108, 029901 (2023)].
[27] H. Inchausp´e, S. Gasparotto, D. Blas, L. Heisenberg, J. Zosso, and S. Tiwari, “Measuring gravitational wave memory with LISA,” Phys. Rev. D 111 no. 4, (2025) 044044, arXiv:2406.09228 [gr-qc].
[28] L. Susskind, “Electromagnetic Memory,” arXiv:1507.02584 [hep-th].
[29] L. Bieri and D. Garfinkle, “An experiment to measure electromagnetic memory,” Class. Quant. Grav. 41 no. 22, (2024) 225009, arXiv:2401.00234 [gr-qc].
[30] L. Heisenberg, B. Rosatello, G. Xu, and J. Zosso, “Constraining Superluminal Einstein-Æther Gravity through Gravitational Memory,” arXiv:2505.09544 [gr-qc].
[31] See [30] for a causal interpretation of this statement.
[32] P. A. Cherenkov, “Visible luminescence of pure liquids under the influence of γ-radiation,” Dokl. Akad. Nauk SSSR 2 no. 8, (1934) 451–454.
[33] J. V. Jelley, “Cerenkov radiation and its applications,” British Journal of Applied Physics 6 no. 7, (Jul, 1955) 227.
[34] B. Ratcliff and J. Schwiening, Cherenkov Radiation, pp. 583–608. Springer International Publishing, Cham, 2021.
[35] The crucial difference to Cherenkov radiation is that the actual production of memory radiation only occurs during the acceleration process of the source.
[36] Note that for a simultaneous emission of multiple current pulses in different directions, the results in section II can simply be stacked. Therefore, an emission of opposite currents in a dipole antenna, for instance, would result in a memory production, in which the features of Fig. 2 are mirrored at θ= π/2 with opposite signs.
[37] To get a feeling for the values ∆AT ∼ 102 − 104[Vs/m] in SI units presented in Fig. 2, consider the following estimates: At length scales of meters, the time scales of the experiment will be of nanoseconds, such that a typical current of 10−3[A] carries a charge of order q∼ 10−12[C]. With these numbers, a two-orders-of-magnitude gain in the potential amplitude lifts the expected strength of the electric field from Emax ∼ q 100 [C] [ns] [Vs/m]∼ 10−1 [V/m] to 10 [V/m].
[38] The idealized situation of a charge emitted at constant velocity vq considered in this work is indeed an excellent model of β-decay [40, 41].
[39] The computational techniques developed in the context of Cherenkov radiation might be of great use.
[40] C. S. W. Chang and D. L. Falkoff, “On the Continuous Gamma-Radiation Accompanying the Beta-Decay of Nuclei,” Phys. Rev. 76 (Aug, 1949) 365–371.
[41] J. D. Jackson, Classical Electrodynamics. Wiley, 1998.
[42] V. Cardoso, J. P. S. Lemos, and S. Yoshida, “Electromagnetic radiation from collisions at almost the speed of light: An extremely relativistic charged particle falling into a Schwarzschild black hole,” Phys. Rev. D 68 (Oct, 2003) 084011.
[43] A. Italiano, E. Amato, D. Pistone, and L. Auditore, “On the internal bremsstrahlung accompanying beta-decay and its potential relevance in the application of radioactive sources,” Reports on Progress in Physics 87 no. 12, (Nov, 2024) 126301. https://dx.doi.org/10.1088/1361-6633/ad8f43.

2 Inhomogeneous plane waves in attenuative anisotropic porous media

Lingli Gao, Weijian Mao, Qianru Xu, Wei Ouyang, Shaokang Yang, Shijun Cheng
https://arxiv.org/pdf/2506.20389

References

Johan OA Robertsson, Joakim O Blanch, and William W Symes. Viscoelastic finite-difference modeling. Geophysics, 59(9):1444–1456, 1994.
Tieyuan Zhu and José M Carcione. Theory and modelling of constant-q p-and s-waves using fractional spatial derivatives. Geophysical Journal International, 196(3):1787–1795, 2014.
Tieyuan Zhu. Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent q wave equation. Geophysics, 82(4):WA1–WA10, 2017.
Stuart Crampin, Eugenie M Chesnokov, and Roger G Hipkin. Seismic anisotropy—the state of the art: Ii. Geophysical Journal International, 76(1):1–16, 1984.
Leon Thomsen. Weak elastic anisotropy. Geophysics, 51(10):1954–1966, 1986.
Song Jin and Alexey Stovas. Reflection and transmission responses for layered transversely isotropic media with vertical and horizontal symmetry axes. Geophysics, 84(4):C181–C203, 2019.
Vladimir Grechka, Andres Pech, Ilya Tsvankin, and Baoniu Han. Velocity analysis for tilted transversely isotropic media: A physical modeling example. Geophysics, 66(3):904–910, 2001.
Ivan Pšenˇ cík and Véronique Farra. Reflection moveout approximations for p-waves in a moderately anisotropic homogeneous tilted transverse isotropy layer. Geophysics, 82(5):C175–C185, 2017.
Xinru Mu, Jianping Huang, Peng Yong, Jinqiang Huang, Xu Guo, Dingjin Liu, and Ziduo Hu. Modeling of pure qp-and qsv-waves in tilted transversely isotropic media with the optimal quadratic approximation. Geophysics, 85(2): C71–C89, 2020.
Ilya Tsvankin. Anisotropic parameters and p-wave velocity for orthorhombic media. Geophysics, 62(4):1292–1309, 1997.
Alexey Stovas. Geometric spreading in orthorhombic media. Geophysics, 83(1):C61–C73, 2018.
Alexey Stovas, Yuriy Roganov, and Vyacheslav Roganov. On singularity points in elastic orthorhombic media.
Geophysics, 88(1):C11–C32, 2023.
Alexey Stovas, Yuriy Roganov, and Vyacheslav Roganov. Degenerate orthorhombic models. Geophysical Journal International, 236(3):1405–1423, 2024a.
Václav Vavryˇ cuk. Weak-contrast reflection/transmission coefficients in weakly anisotropic elastic media: P-wave incidence. Geophysical Journal International, 138(2):553–562, 1999.
Alexey Stovas, Yuriy Roganov, and Vyacheslav Roganov. Singularity points and their degeneracies in anisotropic media. Geophysical Journal International, 238(2):881–901, 2024b.
Rob J Arts and Patrick NJ Rasolofosaon. Approximation of velocity and attenuation in general anisotropic rocks. In SEG Technical Program Expanded Abstracts 1992, pages 640–643. Society of Exploration Geophysicists, 1992.
Manika Prasad and Amos Nur. Velocity and attenuation anisotropy in reservoir rocks. In SEG International Exposition and Annual Meeting, pages SEG–2003. SEG, 2003.
Andrew J Carter and J-Michael Kendall. Attenuation anisotropy and the relative frequency content of split shear waves. Geophysical Journal International, 165(3):865–874, 2006.
Vlastislav Cerven y and Ivan Pšenˇ cík. Quality factor q in dissipative anisotropic media. Geophysics, 73(4):T63–T75, 2008. PJ Usher, J-M Kendall, CM Kelly, and A Rietbrock. Measuring changes in fracture properties from temporal variations in anisotropic attenuation of microseismic waveforms. Geophysical Prospecting, 65:347–362, 2017. Jose M Carcione. Anisotropic q and velocity dispersion of finely layered media1. Geophysical Prospecting, 40(7): 761–783, 1992. Stefano Picotti, José M Carcione, Juan E Santos, and Davide Gei. Q-anisotropy in finely-layered media. Geophysical Research Letters, 37(6), 2010. Stefano Picotti, José M Carcione, and Juan E Santos. Oscillatory numerical experiments in finely layered anisotropic viscoelastic media. Computers & Geosciences, 43:83–89, 2012. Dimitri Komatitsch and Jeroen Tromp. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical journal international, 139(3):806–822, 1999. Tong Bai and Ilya Tsvankin. Time-domain finite-difference modeling for attenuative anisotropic media. Geophysics, 81 (2):C69–C77, 2016. Einar Kjartansson. Constant q-wave propagation and attenuation. Journal of Geophysical Research: Solid Earth, 84 (B9):4737–4748, 1979. Tieyuan Zhu and Tong Bai. Efficient modeling of wave propagation in a vertical transversely isotropic attenuative medium based on fractional laplacian. Geophysics, 84(3):T121–T131, 2019. Ning Wang, Guangchi Xing, Tieyuan Zhu, Hui Zhou, and Ying Shi. Propagating seismic waves in vti attenuating media using fractional viscoelastic wave equation. Journal of Geophysical Research: Solid Earth, 127(4):e2021JB023280, 2022. Shijun Cheng, Weijian Mao, Qingchen Zhang, and Qianru Xu. Wave propagation in the poro-viscoelastic orthorhombic two-phase media: plane-wave theory and wavefield simulation. Geophysical Journal International, 227(1):99–122, 2021. Jiaming Yang, Dinghui Yang, Hongwei Han, Lingyun Qiu, and Yuanfeng Cheng. A wave propagation model with the biot and the fractional viscoelastic mechanisms. Science China Earth Sciences, 64:364–376, 2021. José M Carcione. Wave propagation in anisotropic, saturated porous media: plane-wave theory and numerical simulation. The Journal of the Acoustical Society of America, 99(5):2655–2666, 1996. José M Carcione, Francisco J Sanchez-Sesma, Francisco Luzón, and Juan J Perez Gavilán. Theory and simulation of time-fractional fluid diffusion in porous media. Journal of Physics A: Mathematical and Theoretical, 46(34):345501, 2013. Jing Ba, MingHui Lu, Bin Hu, and HuiZhu Yang. The skeleton-relaxed model for poroviscoelastic media. Chinese Journal of Geophysics, 51(5):1080–1092, 2008. Li Han, Xingguo Huang, Qi Hao, Stewart Greenhalgh, and Xu Liu. Incorporating the nearly constant q models into 3-d poro-viscoelastic anisotropic wave modeling. IEEE Transactions on Geoscience and Remote Sensing, 61:1–11, 2023. Li Han, Tong Sun, Xingguo Huang, J German Rubino, and Qi Hao. Wave propagation in poroviscoelastic vertical transversely isotropic media: A sum-of-exponentials approximation for the simulation of fractional biot-squirt equations. Geophysics, 90(1):T1–T15, 2025. José M Carcione. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Elsevier, 2014. JoséM Carcione and Fabio Cavallini. Energy balance and fundamental relations in anisotropic-viscoelastic media. Wave motion, 18(1):11–20, 1993. Vlastislav Cerven y and Ivan Pšenˇ cík. Plane waves in viscoelastic anisotropic media—i. theory. Geophysical JournalInternational, 161(1):197–212, 2005a.
Vlastislav Cerven y and Ivan Pšenˇ cík. Plane waves in viscoelastic anisotropic media—ii. numerical examples. Geophysical Journal International, 161(1):213–229, 2005b. Vlastislav Cerven y and Ivan Pšenˇ cík. Energy flux in viscoelastic anisotropic media. Geophysical Journal International, 166(3):1299–1317, 2006.
Jyoti Behura and Ilya Tsvankin. Role of the inhomogeneity angle in anisotropic attenuation analysis. Geophysics, 74 (5):WB177–WB191, 2009.
MD Sharma. Energy velocity and quality factor of plane harmonic inhomogeneous waves in anisotropic poro-viscoelastic media. Geophysical Journal International, 180(3):1265–1273, 2010.
Xu Liu, Stewart Greenhalgh, and José M Carcione. Seismic q of inhomogeneous plane waves in porous media. Geophysics, 85(3):T209–T224, 2020.
Maurice A Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. i. low-frequency range. The Journal of the acoustical Society of america, 28(2):168–178, 1956a.
Maurice A Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. ii. higher frequency range. The Journal of the acoustical Society of america, 28(2):179–191, 1956b.
Maurice A Biot. Generalized theory of acoustic propagation in porous dissipative media. The Journal of the Acoustical Society of America, 34(9A):1254–1264, 1962a.
Maurice A Biot. Mechanics of deformation and acoustic propagation in porous media. Journal of applied physics, 33 (4):1482–1498, 1962b.
Michele Caputo and Francesco Mainardi. A new dissipation model based on memory mechanism. Pure and applied Geophysics, 91:134–147, 1971.
Peter W Buchen. Plane waves in linear viscoelastic media. Geophysical Journal International, 23(5):531–542, 1971.
Maurice A Biot and David G Willis. The elastic coefficients of the theory of consolidation. 1957.
M Thompson and JR Willis. A reformation of the equations of anisotropic poroelasticity. 1991.
Dinghui Yang and Zhongjie Zhang. Poroelastic wave equation including the biot/squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 35(3):223–245, 2002.
David Linton Johnson, Joel Koplik, and Roger Dashen. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of fluid mechanics, 176:379–402, 1987.
Jose M Carcione. Viscoelastic effective rheologies for modelling wave propagation in porous media. Geophysical prospecting, 46(3):249–270, 1998.
Xu Liu, Stewart Greenhalgh, Bing Zhou, and Mark Greenhalgh. Effective biot theory and its generalization to poroviscoelastic models. Geophysical Journal International, 212(2):1255–1273, 2018.
Lin Zhang, Jing Ba, and José M Carcione. Wave propagation in infinituple-porosity media. Journal of Geophysical Research: Solid Earth, 126(4):e2020JB021266, 2021.
Stefano Picotti and José M Carcione. Numerical simulation of wave-induced fluid flow seismic attenuation based on the cole-cole model. The Journal of the Acoustical Society of America, 142(1):134–145, 2017.
Yaping Zhu and Ilya Tsvankin. Plane-wave propagation in attenuative transversely isotropic media. Geophysics, 71(2): T17–T30, 2006.
Jorge O Parra. The transversely isotropic poroelastic wave equation including the biot and the squirt mechanisms: Theory and application. Geophysics, 62(1):309–318, 1997.
Jing Ba, Wenhao Xu, Li-Yun Fu, José M Carcione, and Lin Zhang. Rock anelasticity due to patchy saturation and fabric heterogeneity: A double double-porosity model of wave propagation. Journal of Geophysical Research: Solid Earth, 122(3):1949–1976, 2017.

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?