Rethinking Benchmark and Contamination for Language Models with Rephrased Samples
https://arxiv.org/abs/2311.04850
参考文献のURLを追記している。
References
Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J. H., Shafey, L. E., Huang, Y., Meier- Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G. H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C. A., Chowd- hery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., D ́ıaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., It- tycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A.,
Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A. C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D. R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., and Wu, Y. Palm 2 technical report, 2023.
Balle, B., Cherubin, G., and Hayes, J. Reconstructing train- ing data with informed adversaries. In 2022 IEEE Sympo- sium on Security and Privacy (SP), pp. 1138–1156. IEEE, 2022.
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. Language models are few-shot learners, 2020.
Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert- Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, U., Oprea, A., and Raffel, C. Extracting training data from large language models, 2021.
Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramer, F., and Zhang, C. Quantifying memorization across neural language models, 2023.
Chang, Y., Wang, X., Wang, J., Wu, Y., Zhu, K., Chen, H., Yang, L., Yi, X., Wang, C., Wang, Y., et al. A survey on evaluation of large language models. arXiv preprint https://arxiv.org/abs/2307.03109, 2023.
Chaudhary, S. Code alpaca: An instruction-following llama model for code generation. https://github.com/ sahil280114/codealpaca, 2023.
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., et al. Evaluating large language models trained on code. arXiv preprint https://arxiv.org/abs/2107.03374, 2021.
Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano, R., et al. Training verifiers to solve math word problems. arXiv preprint https://arxiv.org/abs/2110.14168, 2021.
Computer, T. Redpajama: An open source recipe to reproduce llama training dataset, April 2023. URL https://github.com/togethercomputer/ RedPajama-Data.
Dodge,J.,Sap,M.,Marasovic ́,A.,Agnew,W.,Ilharco, G., Groeneveld, D., Mitchell, M., and Gardner, M. Documenting large webtext corpora: A case study on the colossal clean crawled corpus. arXiv preprint https://arxiv.org/abs/2104.08758, 2021.
Geng, X. and Liu, H. Openllama: An open reproduction of llama, May 2023. URL https://github.com/openlm-research/open_llama.
Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T., Giorno, A. D., Gopi, S., Javaheripi, M., Kauffmann, P., de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl, H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T., Lee, Y. T., and Li, Y. Textbooks are all you need, 2023.
Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., and Steinhardt, J. Measuring mas- sive multitask language understanding. arXiv preprint https://arxiv.org/abs/2009.03300, 2020.
Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt, J. Measuring math- ematical problem solving with the math dataset. NeurIPS, 2021.
Kiela, D., Bartolo, M., Nie, Y., Kaushik, D., Geiger, A., Wu, Z., Vidgen, B., Prasad, G., Singh, A., Ringshia, P., Ma, Z., Thrush, T., Riedel, S., Waseem, Z., Stenetorp, P., Jia, R., Bansal, M., Potts, C., and Williams, A. Dynabench: Rethinking benchmarking in nlp, 2021.
Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis, C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T., Bahdanau, D., von Werra, L., and de Vries, H. The stack: 3 tb of permissively licensed source code, 2022.
Koh, P. W. and Liang, P. Understanding black-box predic- tions via influence functions, 2020.
Lee, A. N., Hunter, C. J., and Ruiz, N. Platypus: Quick, cheap, and powerful refinement of llms, 2023.
Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O., Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko, O., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma- pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang, Z., Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov, D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhat- tacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas, P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor, N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J., Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson, C. J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried, D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,
S., Wolf, T., Guha, A., von Werra, L., and de Vries, H. Starcoder: may the source be with you!, 2023.
Li, Y. Estimating contamination via perplexity: Quantifying memorisation in language model evaluation, 2023.
Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W., Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., and Roberts, A. The flan collection: Designing data and methods for effective instruction tuning, 2023.
Ma, Z., Ethayarajh, K., Thrush, T., Jain, S., Wu, L., Jia, R., Potts, C., Williams, A., and Kiela, D. Dynaboard: An evaluation-as-a-service platform for holistic next- generation benchmarking. Advances in Neural Infor- mation Processing Systems, 34:10351–10367, 2021.
Mukherjee, S., Mitra, A., Jawahar, G., Agarwal, S., Palangi, H., and Awadallah, A. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.
Olson, M., Wyner, A., and Berk, R. Modern neural net- works generalize on small data sets. Advances in neural information processing systems, 31, 2018.
OpenAI. Gpt-4 technical report, 2023.
Oren, Y., Meister, N., Chatterji, N., Ladhak, F., and Hashimoto, T. B. Proving test set contamination in black box language models, 2023.
Pan, X., Zhang, M., Ji, S., and Yang, M. Privacy risks of general-purpose language models. In 2020 IEEE Sympo- sium on Security and Privacy (SP), pp. 1314–1331. IEEE, 2020.
Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do imagenet classifiers generalize to imagenet?, 2019.
Reimers, N. and Gurevych, I. Sentence-bert: Sentence em- beddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natu- ral Language Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.10084.
Shi, W., Ajith, A., Xia, M., Huang, Y., Liu, D., Blevins, T., Chen, D., and Zettlemoyer, L. Detecting pretraining data from large language models, 2023.
Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P., and Hashimoto, T. B. Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/ stanford_alpaca, 2023.
Team, M. N. Introducing mpt-7b: A new standard for open-source, commercially usable llms, 2023. URL www. mosaicml.com/blog/mpt-7b. Accessed: 2023- 05-05.
Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R., Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., and Scialom, T. Llama 2: Open foundation and fine-tuned chat models, 2023.
Wang, Y., Ivison, H., Dasigi, P., Hessel, J., Khot, T., Chandu, K. R., Wadden, D., MacMillan, K., Smith, N. A., Beltagy, I., and Hajishirzi, H. How far can camels go? exploring the state of instruction tuning on open resources, 2023a.
https://arxiv.org/abs/2306.04751
Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning language models with self-generated instructions, 2023b.
Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao, C., and Jiang, D. Wizardlm: Empowering large language models to follow complex instructions, 2023.
https://arxiv.org/abs/2304.12244
Xu, H. and Koehn, P. Zipporah: a fast and scalable data cleaning system for noisy web-crawled parallel corpora. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2945– 2950, 2017.
Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H., Su, Y., and Chen, W. Mammoth: Building math generalist models through hybrid instruction tuning, 2023.
https://arxiv.org/abs/2309.05653
Zanella-Be ́guelin, S., Wutschitz, L., Tople, S., Ru ̈hle, V., Paverd, A., Ohrimenko, O., Ko ̈pf, B., and Brockschmidt, M. Analyzing information leakage of updates to natu- ral language models. In Proceedings of the 2020 ACM SIGSAC conference on computer and communications security, pp. 363–375, 2020.
Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. Understanding deep learning requires rethinking general- ization, 2017.
Zong, Y., Yu, T., Zhao, B., Chavhan, R., and Hospedales, T. Fool your (vision and) language model with embarrassingly simple permutations, 2023.
https://arxiv.org/abs/2310.01651