Path-Constrained Haptic Motion Guidance via Adaptive Phase-Based Admittance Control, Publisher: IEEE
Erfan Shahriari; Petr Svarny; Seyed Ali Baradaran Birjandi; Matej Hoffmann; Sami Haddadin
https://ieeexplore.ieee.org/document/10814694
Referebce
- Y.-H. Hsieh, Y.-C. Huang, K.-Y. Young, C.-H. Ko, and S. K. Agrawal, “Motion guidance for a passive robot walking helper via user's applied hand forces,” IEEE Trans. Hum.- Mach. Syst., vol. 46, no. 6, pp. 869–881, Dec. 2016.
- X. Lamy, F. Colledani, F. Geffard, Y. Measson, and G. Morel, “Achieving efficient and stable comanipulation through adaptation to changes in human arm impedance,” in Proc. IEEE Int. Conf. Robot. Autom., 2009, pp. 265–271.
- Z. Li, B. Huang, Z. Ye, M. Deng, and C. Yang, “Physical human–robot interaction of a robotic exoskeleton by admittance control,” IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9614–9624, Dec. 2018.
- X. Wu, Z. Li, Z. Kan, and H. Gao, “Reference trajectory reshaping optimization and control of robotic exoskeletons for human-robot co-manipulation,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3740–3751, Aug. 2020.
- H. Seraji, “Adaptive admittance control: An approach to explicit force control in compliant motion,” in Proc. IEEE Int. Conf. Robot. Autom., 1994, pp. 2705–2712.
- A. Q. Keemink, H. van der Kooij, and A. H. Stienen, “Admittance control for physical human–robot interaction,” Int. J. Robot. Res., vol. 37, no. 11, pp. 1421–1444, 2018.
- D. Reyes-Uquillas and T. Hsiao, “Safe and intuitive manual guidance of a robot manipulator using adaptive admittance control towards robot agility,” Robot. Comput.-Integr. Manuf., vol. 70, 2021, Art. no. 102127.
- K. Haninger, M. Radke, A. Vick, and J. Krüger, “Towards high-payload admittance control for manual guidance with environmental contact,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4275–4282, 2022.
- D. Bazzi, G. Priora, A. M. Zanchettin, and P. Rocco, “RRT* and goal-driven variable admittance control for obstacle avoidance in manual guidance applications,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 1920–1927, 2022.
- E. Mariotti, E. Magrini, and A. De Luca, “Admittance control for human-robot interaction using an industrial robot equipped with a F/T sensor,” in Proc. Int. Conf. Robot. Autom., 2019, pp. 6130–6136.
- M. Mujica, M. Crespo, M. Benoussaad, S. Junco, and J.-Y. Fourquet, “Robust variable admittance control for human–robot co-manipulation of objects with unknown load,” Robot. Comput.-Integr. Manuf., vol. 79, 2023, Art. no. 102408.
- L. B. Rosenberg, “The use of virtual fixtures as perceptual overlays to enhance operator performance in remote environments,” Wright-Patterson AFB, OH, USA, Tech. Rep. AL/CF-TR-1994-0089, 1994.
- P. Marayong, M. Li, A. M. Okamura, and G. D. Hager, “Spatial motion constraints: Theory and demonstrations for robot guidance using virtual fixtures,” in Proc. IEEE Int. Conf. Robot. Autom., 2003, vol. 2, pp. 1954–1959.
- C. Sousa, R. Cortesao, and P. Queirós, “Compliant comanipulation control for medical robotics,” in Proc. IEEE 2nd Conf. Hum. Syst. Interact., 2009, pp. 265–271.
- V. Duchaine and C. M. Gosselin, “General model of human-robot cooperation using a novel velocity based variable impedance control,” in Proc. 2nd Joint EuroHaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst., 2007, pp. 446–451.
- L. D. Joly and C. Andriot, “Imposing motion constraints to a force reflecting telerobot through real-time simulation of a virtual mechanism,” in Proc. IEEE Int. Conf. Robot. Autom, 1995, vol. 1, pp. 357–362.
- S. S. Restrepo, G. Raiola, P. Chevalier, X. Lamy, and D. Sidobre, “Iterative virtual guides programming for human-robot comanipulation,” in Proc. IEEE Int. Conf. Adv. Intell. Mechatron., 2017, pp. 219–226.
- G. Raiola, “Co-manipulation with a library of virtual guiding fixtures,” Auton. Robots, vol. 42, pp. 1037–1051, 2018.
- B. Nemec, K. Yasuda, and A. Ude, “A virtual mechanism approach for exploiting functional redundancy in finishing operations,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 4, pp. 2048–2060, Oct. 2020.
- K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The path-velocity decomposition,” Int. J. Robot. Res., vol. 5, no. 3, pp. 72–89, 1986.
- A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement primitives: Learning attractor models for motor behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, 2013.
- B. Sharma, B. M. Pillai, and J. Suthakorn, “Physical human-robot interaction (pHRI) through admittance control of dynamic movement primitives in sit-to-stand assistance robot,” in Proc. IEEE 15th Int. Conf. Hum. Syst. Interact., 2022, pp. 1–6.
- R. J. Escarabajal, J. L. Pulloquinga, Á. Valera, V. Mata, M. Vallés, and F. J. Castillo-García, “Combined admittance control with type II singularity evasion for parallel robots using dynamic movement primitives,” IEEE Trans. Robot., vol. 39, no. 3, pp. 2224–2239, Jun. 2023.
- E. Shahriari, A. Kramberger, A. Gams, A. Ude, and S. Haddadin, “Adapting to contacts: Energy tanks and task energy for passivity-based dynamic movement primitives,” in Proc. IEEE-RAS 17th Int. Conf. Humanoid Robot., 2017, pp. 136–142.
- C. Liu and Z. Li, “Force tracking smooth adaptive admittance control in unknown environment,” Robotica, vol. 41, pp. 1991–2011, 2023.
- J. Cacace, R. Caccavale, A. Finzi, and V. Lippiello, “Variable admittance control based on virtual fixtures for human-robot co-manipulation,” in Proc. IEEE Int. Conf. Syst., Man Cybern., 2019, pp. 1569–1574.
- A. Madani, P. P. Niaz, B. Guler, Y. Aydin, and C. Basdogan, “Robot-assisted drilling on curved surfaces with haptic guidance under adaptive admittance control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 3723–3730.
- B. Guler, P. P. Niaz, A. Madani, Y. Aydin, and C. Basdogan, “An adaptive admittance controller for collaborative drilling with a robot based on subtask classification via deep learning,” Mechatronics, vol. 86, 2022, Art. no. 102851.
- M. Mashayekhi and M. M. Moghaddam, “EMG-driven fatigue-based self-adapting admittance control of a hand rehabilitation robot,” J. Biomech., vol. 138, 2022, Art. no. 111104.
- P. D. Labrecque and C. Gosselin, “Variable admittance for pHRI: From intuitive unilateral interaction to optimal bilateral force amplification,” Robot. Comput.-Integr. Manuf., vol. 52, pp. 1–8, 2018.
Related Article on Qiita
CAN FD and CAN XL on arXiv
https://qiita.com/kaizen_nagoya/items/d8efb0da53cd3456f735
CAN FD & CAN XL on arXiv references
https://qiita.com/kaizen_nagoya/items/7df86c66084372a96f1d
CAN FD & CAN XL on arXiv references name order
https://qiita.com/kaizen_nagoya/items/ec5e4e4491228db534c0
CAN FD & CAN XL on arXiv references name order and related link
https://qiita.com/kaizen_nagoya/items/e6c75c799db62d078bd0
Comparison of Classical CAN, CAN FD, and CAN XL and CAN XL
https://qiita.com/kaizen_nagoya/items/773835b2bf3cddd17dd8
Comparison of CAN XL & 10BASE-T1S Functionality on Layer 1 and Layer 2
https://qiita.com/kaizen_nagoya/items/13235743ba8d7193a53b