LoginSignup
4
6

More than 1 year has passed since last update.

YoloV5をCoreMLに変換。デコードレイヤーも追加する。

Last updated at Posted at 2022-04-04

Yolov5をiOSで使う方法です

Yolov5は物体検出機械学習モデルです。
iPhoneやiPadで使えるように、CoreML形式に変換します。

変換したモデルはそのままでは使えない

CoreMLToolsでシンプルに変換したYoloモデルの出力は、クラスごとの大量のボックスなので、そのままでは使えません。
デコード用のレイヤーと、Non Max Suppressionのレイヤーを追加して、信頼度の高いボックスの座標を絞り込む必要があります。
これらの処理をすることで、iOSのVisionフレームワークで扱えるようになり、また冒頭の画像のような簡単なファイルプレビュー機能が使えるようになります。

iOSで使えるようにするモデル編集スクリプトがこちら

変換ずみモデル(COCOデータセット)はこちら

独自データセットでトレーニングしたYolov5モデルもこちらの変換スクリプトでCoreML形式にできます。

変換コード解説

Yolov5のリポジトリ内にあるエクスポートコードを利用して、PytorchモデルをCoreMLモデルに変換します。

python export.py --weights yolo5s.pt --train --include "coreml"

デコードレイヤーを定義します。

# Just run to define the decode function
import torch
# classLabels = [f"label{i}" for i in range(80)]
numberOfClassLabels = len(classLabels)
outputSize = numberOfClassLabels + 5

#  Attention: Some models are reversed!
reverseModel = False

strides = [8, 16, 32]
if reverseModel:
    strides.reverse()
featureMapDimensions = [640 // stride for stride in strides]

anchors = ([10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [
           116, 90, 156, 198, 373, 326])  # Take these from the <model>.yml in yolov5
if reverseModel:
    anchors = anchors[::-1]

anchorGrid = torch.tensor(anchors).float().view(3, -1, 1, 1, 2)

def make_grid(nx, ny):
    yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
    return torch.stack((xv, yv), 2).view((ny, nx, 2)).float()

def addExportLayerToCoreml(builder):
    '''
    Adds the yolov5 export layer to the coreml model
    '''
    outputNames = [output.name for output in builder.spec.description.output]

    for i, outputName in enumerate(outputNames):
        # formulas: https://github.com/ultralytics/yolov5/issues/471
        builder.add_activation(name=f"sigmoid_{outputName}", non_linearity="SIGMOID",
                               input_name=outputName, output_name=f"{outputName}_sigmoid")

        ### Coordinates calculation ###
        # input (1, 3, nC, nC, 85), output (1, 3, nC, nC, 2) -> nC = 640 / strides[i]
        builder.add_slice(name=f"slice_coordinates_xy_{outputName}", input_name=f"{outputName}_sigmoid",
                          output_name=f"{outputName}_sliced_coordinates_xy", axis="width", start_index=0, end_index=2)
        # x,y * 2
        builder.add_elementwise(name=f"multiply_xy_by_two_{outputName}", input_names=[
                                f"{outputName}_sliced_coordinates_xy"], output_name=f"{outputName}_multiplied_xy_by_two", mode="MULTIPLY", alpha=2)
        # x,y * 2 - 0.5
        builder.add_elementwise(name=f"subtract_0_5_from_xy_{outputName}", input_names=[
                                f"{outputName}_multiplied_xy_by_two"], output_name=f"{outputName}_subtracted_0_5_from_xy", mode="ADD", alpha=-0.5)
        grid = make_grid(
            featureMapDimensions[i], featureMapDimensions[i]).numpy()
        # x,y * 2 - 0.5 + grid[i]
        builder.add_bias(name=f"add_grid_from_xy_{outputName}", input_name=f"{outputName}_subtracted_0_5_from_xy",
                         output_name=f"{outputName}_added_grid_xy", b=grid, shape_bias=grid.shape)
        # (x,y * 2 - 0.5 + grid[i]) * stride[i]
        builder.add_elementwise(name=f"multiply_xy_by_stride_{outputName}", input_names=[
                                f"{outputName}_added_grid_xy"], output_name=f"{outputName}_calculated_xy", mode="MULTIPLY", alpha=strides[i])

        # input (1, 3, nC, nC, 85), output (1, 3, nC, nC, 2)
        builder.add_slice(name=f"slice_coordinates_wh_{outputName}", input_name=f"{outputName}_sigmoid",
                          output_name=f"{outputName}_sliced_coordinates_wh", axis="width", start_index=2, end_index=4)
        # w,h * 2
        builder.add_elementwise(name=f"multiply_wh_by_two_{outputName}", input_names=[
                                f"{outputName}_sliced_coordinates_wh"], output_name=f"{outputName}_multiplied_wh_by_two", mode="MULTIPLY", alpha=2)
        # (w,h * 2) ** 2
        builder.add_unary(name=f"power_wh_{outputName}", input_name=f"{outputName}_multiplied_wh_by_two",
                          output_name=f"{outputName}_power_wh", mode="power", alpha=2)
        # (w,h * 2) ** 2 * anchor_grid[i]
        anchor = anchorGrid[i].expand(-1, featureMapDimensions[i],
                                      featureMapDimensions[i], -1).numpy()
        builder.add_load_constant_nd(
            name=f"anchors_{outputName}", output_name=f"{outputName}_anchors", constant_value=anchor, shape=anchor.shape)
        builder.add_elementwise(name=f"multiply_wh_with_achors_{outputName}", input_names=[
                                f"{outputName}_power_wh", f"{outputName}_anchors"], output_name=f"{outputName}_calculated_wh", mode="MULTIPLY")

        builder.add_concat_nd(name=f"concat_coordinates_{outputName}", input_names=[
                              f"{outputName}_calculated_xy", f"{outputName}_calculated_wh"], output_name=f"{outputName}_raw_coordinates", axis=-1)
        builder.add_scale(name=f"normalize_coordinates_{outputName}", input_name=f"{outputName}_raw_coordinates",
                          output_name=f"{outputName}_raw_normalized_coordinates", W=torch.tensor([1 / 640]).numpy(), b=0, has_bias=False)

        ### Confidence calculation ###
        builder.add_slice(name=f"slice_object_confidence_{outputName}", input_name=f"{outputName}_sigmoid",
                          output_name=f"{outputName}_object_confidence", axis="width", start_index=4, end_index=5)
        builder.add_slice(name=f"slice_label_confidence_{outputName}", input_name=f"{outputName}_sigmoid",
                          output_name=f"{outputName}_label_confidence", axis="width", start_index=5, end_index=0)
        # confidence = object_confidence * label_confidence
        builder.add_multiply_broadcastable(name=f"multiply_object_label_confidence_{outputName}", input_names=[
                                           f"{outputName}_label_confidence", f"{outputName}_object_confidence"], output_name=f"{outputName}_raw_confidence")

        # input: (1, 3, nC, nC, 85), output: (3 * nc^2, 85)
        builder.add_flatten_to_2d(
            name=f"flatten_confidence_{outputName}", input_name=f"{outputName}_raw_confidence", output_name=f"{outputName}_flatten_raw_confidence", axis=-1)
        builder.add_flatten_to_2d(
            name=f"flatten_coordinates_{outputName}", input_name=f"{outputName}_raw_normalized_coordinates", output_name=f"{outputName}_flatten_raw_coordinates", axis=-1)

    builder.add_concat_nd(name="concat_confidence", input_names=[
                          f"{outputName}_flatten_raw_confidence" for outputName in outputNames], output_name="raw_confidence", axis=-2)
    builder.add_concat_nd(name="concat_coordinates", input_names=[
                          f"{outputName}_flatten_raw_coordinates" for outputName in outputNames], output_name="raw_coordinates", axis=-2)

    builder.set_output(output_names=["raw_confidence", "raw_coordinates"], output_dims=[
                       (25200, numberOfClassLabels), (25200, 4)])

Non Max Suppression を定義します。

# Just run to define the NMS function

def createNmsModelSpec(nnSpec):
    '''
    Create a coreml model with nms to filter the results of the model
    '''
    nmsSpec = ct.proto.Model_pb2.Model()
    nmsSpec.specificationVersion = 4

    # Define input and outputs of the model
    for i in range(2):
        nnOutput = nnSpec.description.output[i].SerializeToString()

        nmsSpec.description.input.add()
        nmsSpec.description.input[i].ParseFromString(nnOutput)

        nmsSpec.description.output.add()
        nmsSpec.description.output[i].ParseFromString(nnOutput)

    nmsSpec.description.output[0].name = "confidence"
    nmsSpec.description.output[1].name = "coordinates"

    # Define output shape of the model
    outputSizes = [numberOfClassLabels, 4]
    for i in range(len(outputSizes)):
        maType = nmsSpec.description.output[i].type.multiArrayType
        # First dimension of both output is the number of boxes, which should be flexible
        maType.shapeRange.sizeRanges.add()
        maType.shapeRange.sizeRanges[0].lowerBound = 0
        maType.shapeRange.sizeRanges[0].upperBound = -1
        # Second dimension is fixed, for "confidence" it's the number of classes, for coordinates it's position (x, y) and size (w, h)
        maType.shapeRange.sizeRanges.add()
        maType.shapeRange.sizeRanges[1].lowerBound = outputSizes[i]
        maType.shapeRange.sizeRanges[1].upperBound = outputSizes[i]
        del maType.shape[:]

    # Define the model type non maximum supression
    nms = nmsSpec.nonMaximumSuppression
    nms.confidenceInputFeatureName = "raw_confidence"
    nms.coordinatesInputFeatureName = "raw_coordinates"
    nms.confidenceOutputFeatureName = "confidence"
    nms.coordinatesOutputFeatureName = "coordinates"
    nms.iouThresholdInputFeatureName = "iouThreshold"
    nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
    # Some good default values for the two additional inputs, can be overwritten when using the model
    nms.iouThreshold = 0.6
    nms.confidenceThreshold = 0.4
    nms.stringClassLabels.vector.extend(classLabels)

    return nmsSpec

CoreMLモデルにデコードレイヤーとNon Max Suppressionを追加します。

# run the functions to add decode layer and NMS to the model.
addExportLayerToCoreml(builder)
nmsSpec = createNmsModelSpec(builder.spec)
combineModelsAndExport(builder.spec, nmsSpec, f"yolo5s.mlmodel") # The model will be saved in this path.

これで、Visionで使えるCoreMLモデルが保存されます。

スクリーンショット 2022-04-04 9.09.49.png

iOSでの使用方法

デコードとNMSは、以下のリポジトリと書籍を参照しています。

🐣


フリーランスエンジニアです。
お仕事のご相談こちらまで
rockyshikoku@gmail.com

Core MLやARKitを使ったアプリを作っています。
機械学習/AR関連の情報を発信しています。

Twitter
Medium
GitHub

4
6
4

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
6