知ってるようで知らない画像分類の使い方
画像分類は基本タスクな感じがするけど、じゃあどうすればいいのかとなるとどうするんだっけという感じもする。
state of artの先端アーキテクチャも色々あるんだろうけど、torchvisionのモデルでけっこう精度でるし、自分はけっこう十分です。
推論の仕方
利用可能なモデルとweightsは以下を参照。
モデルの初期化
import torchvision.models as models
weights = models.ViT_L_16_Weights.IMAGENET1K_SWAG_E2E_V1
model = models.vit_l_16(weights=weights)
画像の前処理
from PIL import Image
transforms = weights.transforms()
im = Image.open("cat.jpg")
input = transforms(im)
クラスの読み込み
ImageNet1kのクラス名です。
classes = weights.meta["categories"]
推論
import torch
with torch.no_grad():
outputs = model(im.unsqueeze(dim=0).to("cpu"))
outputs = torch.nn.Softmax(dim=1)(outputs)
conf, pred = torch.max(outputs, 1)
print(classes[int(pred)])
print(float(conf[0]))
tabby, tabby cat
0.5702
速度比較
Colabの一番安いT4GPUでテスト。
model | ImageNetTop1 Acc | sec |
---|---|---|
ViT_L_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 88.1 | 13.3 |
ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 85.3 | 2.2 |
Swin_S_Weights.IMAGENET1K_V1 | 83.2 | 0.4 |
ConvNeXt_Small_Weights.IMAGENET1K_V1 | 83.6 | 0.3 |
学習
必要なライブラリのインポート
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
cudnn.benchmark = True
plt.ion() # interactive mode
データの準備
以下のディレクトリ構造でクラスごとにフォルダ分けした画像をtrain、valそれぞれ用意
my_dataset
|
|__train
| |__class0
| | |__****.jpg
| | |__****.jpg
| | |
| |
| |__class1
| |
|
|__val
|__class0
| |__****.jpg
| |__****.jpg
| |
|
|__class1
|
データをtorchvisionのdataset形式にする。
リサイズのサイズは、torchvisionの各モデルのページを参照。
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.Resize([256,256]),
# transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize([256,256]),
# transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'my_dataset'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
表示してデータを確認。クラス名も取得。
def imshow(inp, title=None):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
train関数
関数内でweightsチェックポイントの保存先を指定。
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
save_path = "save_dir/my_model"+str(epoch)+".pt"
torch.save({'epoch': epoch,'model_state_dict': model.state_dict(),'optimizer_state_dict': optimizer.state_dict(),'loss': loss,}, save_path)
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:4f}')
# load best model weights
model.load_state_dict(best_model_wts)
return model
事前トレーニング済みモデルとトレーニングシステムの初期化
num_ftrs = model.head.in_features
model.head = nn.Linear(num_ftrs, len(class_names))
model = model.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model.parameters(), lr=0.001, momentum=0.9,weight_decay=0.02)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
トレーニング開始
model_ft = train_model(model, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=1000)
トレーニングしたweightsで推論
import torch
from torchvision import models, transforms
from PIL import Image
model = models.swin_v2_s(weights=None)
num_ftrs = model.head.in_features
model.head = torch.nn.Linear(num_ftrs, len(class_names))
if torch.cuda.is_available():
checkpoint = torch.load(weights_path)
device = 'cuda'
else:
checkpoint = torch.load(weights_path,map_location=torch.device('cpu'))
device = 'cpu'
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
model = model.to(device)