36
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

RetailAI AdventurersAdvent Calendar 2023

Day 19

Coqを試してみた

Last updated at Posted at 2023-12-18

はじめに

Retail AI Adventurers Advent Calendar 2023の19日目の投稿です。
昨日は@urakawa_jinseiさんのAirで始めるGo開発でした。

この記事のゴール

  • Coq と呼ばれる証明支援器を試してみる記事です。
  • 与えられた命題に対して、手作業で得られた証明とCoqの操作により得られた証明が論理的に一致していることを確認してみます。

環境構築

本記事で使用する命題

\forall P ((P \Rightarrow Q) \Rightarrow Q) \Rightarrow ((P \Rightarrow Q) \Rightarrow P) \Rightarrow P

証明 | without Coq

(注意)本記事では証明の詳細には立ち入りませんので、証明を詳しく追いたい方は1を参照してください。

  • 変形1

    • givens
    \forall P ((P \Rightarrow Q) \Rightarrow Q)
    
    • goal
    ((P \Rightarrow Q) \Rightarrow P) \Rightarrow P
    
  • 変形2

    • givens
    \forall P ((P \Rightarrow Q) \Rightarrow Q)
    
    (P \Rightarrow Q) \Rightarrow P
    
    • goal
    P
    
  • 変形3(modus ponens を適用)

    • givens
    \forall P ((P \Rightarrow Q) \Rightarrow Q)
    
    (P \Rightarrow Q) \Rightarrow P
    
    • goal
    P \Rightarrow Q
    
  • 変形4

    • givens
    \forall P ((P \Rightarrow Q) \Rightarrow Q)
    
    (P \Rightarrow Q) \Rightarrow P
    
    P
    
    • goal
    Q
    
  • 変形4 において、givens の1行目から goal が得られるので証明終。

証明 | with Coq

(注意)本記事では Coq の使用方法の詳細には立ち入りませんので、使用方法を詳しく追いたい方は2を参照してください。
以下のコードを実行します(Coq の拡張子は .v らしいです)。

introduction.v
Goal forall (P Q: Prop), (forall P: Prop, (P -> Q) -> Q) -> ((P -> Q) -> P) -> P.

Proof.

intros.

apply H0.

intro. (* <- ここまで実行します*)

(*
apply (H(P->Q)).

apply (H P).

Qed.
*)

以下の結果が得られました。

result
1 subgoal
P, Q : Prop
H : forall P : Prop, (P -> Q) -> Q
H0 : (P -> Q) -> P
H1 : P
______________________________________(1/1)
Q

証明 | without Coq変形4 givens / goalと見比べてみます。

  • givens(再掲)
\forall P ((P \Rightarrow Q) \Rightarrow Q)
(P \Rightarrow Q) \Rightarrow P
P
  • goal(再掲)
Q

一致していることが確認できました。

残りのコードを実行すると証明完了になります。

introduction.v
Goal forall (P Q: Prop), (forall P: Prop, (P -> Q) -> Q) -> ((P -> Q) -> P) -> P.

Proof.

intros.

apply H0.

intro.

apply (H(P->Q)).

apply (H P).

Qed.

めでたしめでたし。

まとめ

  • まだ始めて1日ですが、表現したい命題をうまくコードに落とし込むためには Coq のライブラリに慣れる必要があり、習得コストはなかなか高そうです。
  • 慣れると面白いかもしれません。

参考

  1. https://www.amazon.co.jp/How-Prove-Structured-Daniel-Velleman/dp/110842418X/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=&sr=

  2. https://www.iijlab.net/activities/programming-coq/

36
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
36
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?