0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

科学と神々株式会社Advent Calendar 2024

Day 3

~分散処理を透過的に実現するランタイム~

Posted at

第3回:Cusinart - 透過的分散処理の基礎

~分散処理を透過的に実現するランタイム~

はじめに

Cusinartフレームワークは、分散システムの複雑さを隠蔽し、単一システムのように扱えるようにする分散処理ランタイムです。本稿では基本機能について解説します。

分散環境の透過的実装

// ノード管理の基本実装
pub struct NodeManager {
    nodes: HashMap<NodeId, NodeInfo>,
    connection_pool: ConnectionPool,
    health_checker: HealthChecker,
}

impl NodeManager {
    pub async fn new(config: NodeConfig) -> Result<Self> {
        let pool = ConnectionPool::new(config.pool_size);
        let checker = HealthChecker::new(config.health_check_interval);
        
        Ok(Self {
            nodes: HashMap::new(),
            connection_pool: pool,
            health_checker: checker,
        })
    }

    pub async fn register_node(&mut self, node: NodeInfo) -> Result<()> {
        self.nodes.insert(node.id(), node);
        self.health_checker.register_node(node.id()).await?;
        Ok(())
    }

    pub async fn get_available_node(&self) -> Result<NodeId> {
        self.health_checker
            .get_healthy_nodes()
            .await?
            .first()
            .copied()
            .ok_or(Error::NoAvailableNodes)
    }
}

// 分散処理の抽象化
pub trait DistributedComputation: Send + Sync {
    type Input;
    type Output;
    
    async fn execute(&self, input: Self::Input) -> Result<Self::Output>;
    fn estimate_cost(&self, input: &Self::Input) -> ComputationCost;
}

// 透過的な実行エンジン
pub struct ExecutionEngine {
    node_manager: Arc<NodeManager>,
    scheduler: TaskScheduler,
}

impl ExecutionEngine {
    pub async fn execute<C: DistributedComputation>(
        &self,
        computation: C,
        input: C::Input,
    ) -> Result<C::Output> {
        let cost = computation.estimate_cost(&input);
        let node_id = self.scheduler.select_node(cost).await?;
        
        let node = self.node_manager.get_node(node_id)?;
        node.execute_remote(computation, input).await
    }
}

ノード間通信の最適化

// 効率的な通信プロトコル
pub struct CommunicationChannel {
    transport: Box<dyn Transport>,
    compression: CompressionStrategy,
    buffer_pool: BufferPool,
}

impl CommunicationChannel {
    pub async fn send<T: Serialize>(&self, data: &T) -> Result<()> {
        let buffer = self.buffer_pool.acquire().await?;
        
        // 効率的なシリアライズと圧縮
        let bytes = self.compression.compress(
            &bincode::serialize(data)?
        )?;
        
        self.transport.send(&bytes).await?;
        self.buffer_pool.release(buffer);
        Ok(())
    }
    
    pub async fn receive<T: DeserializeOwned>(&self) -> Result<T> {
        let buffer = self.buffer_pool.acquire().await?;
        let bytes = self.transport.receive().await?;
        
        // 解凍とデシリアライズ
        let data = bincode::deserialize(
            &self.compression.decompress(&bytes)?
        )?;
        
        self.buffer_pool.release(buffer);
        Ok(data)
    }
}

// バッファプールの実装
pub struct BufferPool {
    buffers: ArrayQueue<Vec<u8>>,
    buffer_size: usize,
}

impl BufferPool {
    pub async fn acquire(&self) -> Result<Vec<u8>> {
        match self.buffers.pop() {
            Some(buffer) => Ok(buffer),
            None => Ok(Vec::with_capacity(self.buffer_size))
        }
    }

    pub fn release(&self, mut buffer: Vec<u8>) {
        buffer.clear();
        let _ = self.buffers.push(buffer);
    }
}

状態同期メカニズム

// 分散状態管理
pub struct StateManager {
    storage: DistributedStorage,
    synchronizer: StateSynchronizer,
    conflict_resolver: ConflictResolver,
}

impl StateManager {
    pub async fn update_state<T: State>(&self, key: StateKey, value: T) -> Result<()> {
        // バージョン管理付きの状態更新
        let version = self.storage.get_version(&key)?;
        let update = StateUpdate {
            key: key.clone(),
            value,
            version: version.next(),
            timestamp: SystemTime::now(),
        };
        
        // 他ノードとの同期
        self.synchronizer.broadcast_update(&update).await?;
        
        // 永続化
        self.storage.store(key, update).await
    }
    
    pub async fn resolve_conflicts(&self, key: StateKey) -> Result<()> {
        let versions = self.synchronizer.get_all_versions(&key).await?;
        let resolved = self.conflict_resolver.resolve(versions)?;
        self.storage.store(key, resolved).await
    }
}

// CRDTベースの同期
pub struct StateSynchronizer {
    crdt: Box<dyn CRDT>,
    peers: Vec<PeerNode>,
}

impl StateSynchronizer {
    pub async fn broadcast_update<T: State>(&self, update: &StateUpdate<T>) -> Result<()> {
        // CRDTによる更新の伝播
        let crdt_op = self.crdt.prepare_update(update)?;
        
        for peer in &self.peers {
            peer.send_update(&crdt_op).await?;
        }
        Ok(())
    }
    
    pub async fn merge_remote_state<T: State>(&self, remote: StateUpdate<T>) -> Result<()> {
        self.crdt.merge(remote)?;
        Ok(())
    }
}

実装例:分散カウンターの実装

// 分散カウンターの実装
#[derive(Clone, Serialize, Deserialize)]
pub struct DistributedCounter {
    value: i64,
    version: Version,
}

impl DistributedComputation for DistributedCounter {
    type Input = i64;
    type Output = i64;
    
    async fn execute(&self, increment: Self::Input) -> Result<Self::Output> {
        let new_value = self.value + increment;
        Ok(new_value)
    }
    
    fn estimate_cost(&self, _: &Self::Input) -> ComputationCost {
        ComputationCost::Light
    }
}

// 使用例
async fn increment_counter(engine: &ExecutionEngine, counter: &DistributedCounter) -> Result<i64> {
    engine.execute(counter, 1).await
}

// CRDTベースのカウンター同期
struct CounterCRDT {
    values: HashMap<NodeId, i64>,
}

impl CRDT for CounterCRDT {
    fn merge(&mut self, other: &Self) -> Result<()> {
        for (node_id, &value) in &other.values {
            let current = self.values.entry(*node_id).or_default();
            *current = std::cmp::max(*current, value);
        }
        Ok(())
    }
    
    fn value(&self) -> i64 {
        self.values.values().sum()
    }
}

今回のまとめ

  1. 分散処理を透過的に扱うための基本機能を実装
  2. 効率的なノード間通信の実現
  3. CRDTを用いた堅牢な状態同期
  4. 実用的な分散カウンターの実装例

次回予告

第4回では、cusinartの高度な機能である組込みデバッガーとホットリロードの実装について解説します。Erlang型のホットリロードシステムと分散デバッグ機能の詳細な実装例を示していきます。

参考資料

  • Distributed Systems: Principles and Paradigms
  • CRDTs: Consistency without Concurrency Control
  • Rust Async Programming
  • Network Programming with Rust
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?