0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

【画像処理100本ノックに挑戦】Q.17. Laplacianフィルタ

Last updated at Posted at 2019-12-15

使用したライブラリ

【画像処理100本ノック】独自の画像入出力クラスを作る

Q.17. Laplacianフィルタ

Laplacianフィルタを実装せよ。
Laplacian(ラプラシアン)フィルタとは輝度の二次微分をとることでエッジ検出を行うフィルタである。

ラプラシアンフィルタは使ったことないです。ラプラシアンの差分近似自体は計算したことがあるので省略します。これもカーネルを変えるだけですね。ここらへんはフィルタ地獄ですね。早く抜け出したい・・・。

int main()
{
	PPM ppm("imori.pnm");
	int width = ppm.Get_width();
	int height = ppm.Get_height();
	PPM ppm2(width, height);

	auto kernel = [&](int i, int j)
	{
		double ret = 0;
		if (i == 0 && j == 0) ret = -4;
		if (i * j == 0 && (abs(i) == 1 || abs(j) == 1)) ret = 1;
		return ret;// / 16.;
	};

	auto conv = [&](const std::vector<std::vector<double>>& f)
	{
		std::vector < std::vector < double >> ret(width, std::vector<double>(height));
		for (int j = 0; j < height; j++)
			for (int i = 0; i < width; i++)
			{
				ret[i][j] = 0;
			}
		for (int j = 0; j < height; j++)
			for (int i = 0; i < width; i++)
			{
				int sum = 0;
				for (int di = -1; di <= 1; di++)
					for (int dj = -1; dj <= 1; dj++)
					{
						if (i - di >= 0 && i - di < width && j - dj >= 0 && j - di < height)
						{
							ret[i][j] += kernel(di, dj) * f[i - di][j - dj];
							sum += kernel(di, dj);
						}
					}
				//ret[i][j] /= (double)sum;
			}
		return ret;
	};

	std::vector < std::vector < double >> arry(width, std::vector<double>(height));
	for (int j = 0; j < height; j++)
		for (int i = 0; i < width; i++)
		{
			int r = ppm(i, j, 'r');
			int g = ppm(i, j, 'g');
			int b = ppm(i, j, 'b');
			int y = (std::round)(0.2126 * r + 0.7152 * g + 0.0722 * b);
			arry[i][j] = y;
		}
	arry = conv(arry);

	for (int j = 0; j < height; j++)
		for (int i = 0; i < width; i++)
		{
			int val = abs(arry[i][j]);
			if (val > 255) val = 255;
			ppm2(i, j, 'r') = val;
			ppm2(i, j, 'g') = val;
			ppm2(i, j, 'b') = val;

		}

	ppm2.Flush("out.ppm");
	return 0;
}

imori.png out.png

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?