6
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

fairseqのinteractiveをクラス化する

Posted at

やりたいこと

fairseqで学習したモデルの読み込みが長いので、fairseq-interactiveと同じ動作をするclassを作成する。

fairseqのバージョンは0.9.0を使っている。

コード


from collections import namedtuple

import torch

from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.data import encoders

Batch = namedtuple('Batch', 'ids src_tokens src_lengths')
Translation = namedtuple('Translation', 'src_str hypos pos_scores alignments')

def make_batches(lines, args, task, max_positions, encode_fn):
    tokens = [
        task.source_dictionary.encode_line(
            encode_fn(src_str), add_if_not_exist=False
        ).long()
        for src_str in lines
    ]
    lengths = torch.LongTensor([t.numel() for t in tokens])
    itr = task.get_batch_iterator(
        dataset=task.build_dataset_for_inference(tokens, lengths),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
    ).next_epoch_itr(shuffle=False)
    for batch in itr:
        yield Batch(
            ids=batch['id'],
            src_tokens=batch['net_input']['src_tokens'], src_lengths=batch['net_input']['src_lengths'],
        )

class Generator():
    def __init__(self, data_path, checkpoint_path="checkpoint_best.pt"):
        self.parser = options.get_generation_parser(interactive=True)
        self.parser.set_defaults(path=checkpoint_path,
            remove_bpe=None, dataset_impl="lazy", num_wokers=5
        )
        self.args = options.parse_args_and_arch(self.parser,
            input_args=[data_path]
        )

        utils.import_user_module(self.args)

        if self.args.buffer_size < 1:
            self.args.buffer_size = 1
        if self.args.max_tokens is None and self.args.max_sentences is None:
            self.args.max_sentences = 1

        assert not self.args.sampling or self.args.nbest == self.args.beam, \
            '--sampling requires --nbest to be equal to --beam'
        assert not self.args.max_sentences or self.args.max_sentences <= self.args.buffer_size, \
            '--max-sentences/--batch-size cannot be larger than --buffer-size'

        self.use_cuda = torch.cuda.is_available() and not self.args.cpu

        self.task = tasks.setup_task(self.args)

        self.models, self._model_args = checkpoint_utils.load_model_ensemble(
            self.args.path.split(':'),
            arg_overrides=eval(self.args.model_overrides),
            task=self.task,
        )

        self.src_dict = self.task.source_dictionary
        self.tgt_dict = self.task.target_dictionary

        for model in self.models:
            model.make_generation_fast_(
                beamable_mm_beam_size=None if self.args.no_beamable_mm else self.args.beam,
                need_attn=self.args.print_alignment,
            )
            if self.args.fp16:
                model.half()
            if self.use_cuda:
                model.cuda()

        self.generator = self.task.build_generator(self.models, self.args)

        if self.args.remove_bpe == 'gpt2':
            from fairseq.gpt2_bpe.gpt2_encoding import get_encoder
            self.decoder = get_encoder(
                'fairseq/gpt2_bpe/encoder.json',
                'fairseq/gpt2_bpe/vocab.bpe',
            )
            self.encode_fn = lambda x: ' '.join(map(str, self.decoder.encode(x)))
        else:
            self.decoder = None
            self.encode_fn = lambda x: x

        self.align_dict = utils.load_align_dict(self.args.replace_unk)

        self.max_positions = utils.resolve_max_positions(
            self.task.max_positions(),
            *[model.max_positions() for model in self.models]
        )

    def generate(self, string):
        start_id = 0
        inputs = [string]
        results = []
        for batch in make_batches(inputs, self.args, self.task, self.max_positions, self.encode_fn):
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            if self.use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translations = self.task.inference_step(self.generator, self.models, sample)
            for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], self.tgt_dict.pad())
                results.append((start_id + id, src_tokens_i, hypos))

        for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
            if self.src_dict is not None:
                src_str = self.src_dict.string(src_tokens, self.args.remove_bpe)

            for hypo in hypos[:min(len(hypos), self.args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None,
                    align_dict=self.align_dict,
                    tgt_dict=self.tgt_dict,
                    remove_bpe=self.args.remove_bpe,
                )

                if self.decoder is not None:
                    hypo_str = self.decoder.decode(map(int, hypo_str.strip().split()))

                return hypo_str

##使い方

gen = Generator("/path/to/data.src_trg", "/path/to/checkpoint_best.pt")
gen.generate("分か ち 書き し た 文 章")
>   され   

参考

分かち書きがされない。最新版0.9.0だと使えない。
https://github.com/sharad461/nepali-translator/blob/master/translator/app/modules/interactive.py

オリジナルのfairseq-interactive
https://github.com/pytorch/fairseq/blob/master/fairseq_cli/interactive.py

6
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
6
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?