1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

第48話 ベルトラン・チェビシェフの定理の拡張

Last updated at Posted at 2018-11-24

この記事は仮面ライダービルドの数式の第48話です。

\arg⁡min_{N}⁡[∀≥N,∃p∈(N,\frac{9}{8}N)] =48

ベルトラン・チェビシェフの定理の拡張です。
ベルトラン・チェビシェフの定理とは、ある数nとその2倍の数の間には素数が必ず存在する、という定理です。

例えば、3と6の間には5という素数があります。
10と20の間には、11,13,17と3つも素数があります。

2倍だと範囲が広いので、48以降の数とすれば、
この範囲を1.125倍まで小さくできるのが今回の式です。

48と54の間には53という素数があります。
53を避けて54~60にすると59があり、
60~66だと、61があり、という風に次の素数がどんどん出てきます。

nとn×a(a>1)との間に素数が必ずあるようにするには、aはどこまで小さくできるでしょうか。
結論から言えば、どこまでも小さく出来ます。

なぜなら、aがどんなに小さくても、nを無限大まで大きくしてしまえば、
どこかで条件を満たすnが見つかってしまうからです。

素数定理によると、素数の出現確率はlog nですから、
10000だと約1/9、1億だとその半分の約1/18です。

素数の出現確率が対数で表されるということは、2乗すると確率が半分になります。
ですから、今の数に対して何倍、という計算では
数が大きくなればなるほど余裕で条件を満たせるようになります。

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?