LoginSignup
1
1

More than 5 years have passed since last update.

第39話 収束級数

Last updated at Posted at 2018-10-25

この記事は仮面ライダービルドの数式の第39話です。

4\pi^2−\sum_{n=1}^\infty\frac{16}{n^2(n+1)^2(n+2)^2}=39

これは次の式を変形したものです。

\sum_{n=1}^\infty\frac{1}{n^2(n+1)^2(n+2)^2}=\frac{4\pi^2-39}{16}

これも根気よく計算することでこの値になります。
解くには次の式と第6話で出てきた式を使います

\frac{1}{n(n+a)}=\frac{1}{a}\left(\frac{1}{n}-\frac{1}{n+a}\right)

計算していきますが、長いので盛大に省略していきます。

\left(\frac{1}{n(n+1)(n+2)}\right)^2=\left(\frac{1}{2}(\frac{1}{n}-\frac{2}{n+1}+\frac{1}{n+2})\right)^2\\
=\frac{1}{4}\left(\frac{1}{n^2}+\frac{4}{(n+1)^2}+\frac{1}{(n+2)^2}-3(\frac{1}{n}-\frac{1}{n+2}) \right)

この式をΣに入れていきます。

\frac{1}{4}\sum_{n=1}^{\infty} \left(\frac{1}{n^2}+\frac{4}{(n+1)^2}+\frac{1}{(n+2)^2}-3(\frac{1}{n}-\frac{1}{n+2}) \right)\\
=\frac{1}{4}\left(\frac{\pi^2}{6}+4(\frac{\pi^2}{6}-1)+(\frac{\pi^2}{6}-1-\frac{1}{4})-3(1+\frac{1}{2}) \right)\\
=\frac{1}{4}(\pi-\frac{39}{4})

ということで冒頭の式が出てきました。

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1