5
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

Lorenz方程式をExtend Kalman Filterでデータ同化するJuliaのコード

Last updated at Posted at 2024-04-01

Lorentz(1963)の方程式

カオスの研究で有名な方程式です。

\frac{\partial x_1}{\partial t} = \sigma (x_2 - x_1) 
 \frac{\partial x_2}{\partial t} = x_1(\rho-x_3) -x_2
 \frac{\partial x_3}{\partial t} = x_1 x_2 - \beta x_3

以下の条件で解きます。パラメータ

\sigma = 10, \rho=28, \beta = 8/3

初期値 

(x_1, x_2, x_3)=(1, 0, 0)

データ同化ありなしの比較

ローレンツ・アトラクタ。はじめのうちは3本とも重なっていますが,途中からずれてます。データ同化する(オレンジ)と真値とほぼ同様の解になります。
lorentz3D-da.gif

データ同化

Lorentz96の方は下記。

今回の数値解法は上記と同様,4次精度のルンゲ=クッタです。

using PyPlot
using Random
using LinearAlgebra
using HDF5

function Lorentz63(x::Vector{Float64})
    σ::Float64 = 10
    ρ::Float64 = 28
    β::Float64 = 8/3
    
    Lorentz63 = zeros(3)
    Lorentz63[1] = σ*(x[2]-x[1])
    Lorentz63[2] = x[1]*(ρ - x[3]) - x[2]
    Lorentz63[3] = x[1]*x[2] - β*x[3]
    
    return Lorentz63
end

function RK4(f, dt, x)
    k1 = f(x)
    k2 = f(x + k1*dt*0.5)
    k3 = f(x + k2*dt*0.5)
    k4 = f(x + k3*dt)
    return x + dt*(k1 + 2k2 + 2k3 + k4)/6.
end

# 観測値の生成
function makeobs(y, xtrue, dstep, nmax)
    Random.seed!(10)
    for i=1:nmax
        if mod(i, dstep) == 0
            y[:,i] .= xtrue[:,i] .+ randn()
        end
    end
    
end

# Jacobianの生成
function makeM(x, N, dt)
    delta = 1e-2
    E = Matrix{Float64}(I, N, N)
    M = zeros(Float64, N, N)
    
    for j=1:N
        M[:, j] = (RK4(Lorentz63, dt, x + delta*E[:, j]) - RK4(Lorentz63, dt, x))/delta
    end
    
    return M
end

function main()
    nmax = 10000
    dstep = 5
    dt = 0.01
    
    x0 = zeros(3, nmax+1)
    x1 = zeros(3, nmax+1)
    x0[:,1] = [1.0, 0., 0.]
    x1[:,1] = [1.00001, 0., 0.]

    # x0が真値,x1が真値と初期値が若干異なる解
    for i=1:nmax
        x0[:, i+1] = RK4(Lorentz63, dt, x0[:,i])
        x1[:, i+1] = RK4(Lorentz63, dt, x1[:,i])
    end
    #println(x)
    
    y = zeros(3, nmax +1)     
    makeobs(y, x0, dstep, nmax)
    
    N = 3
    Xa = zeros(Float64, N, nmax+1)
    Xf = zeros(Float64, N, nmax+1)
    Pa = zeros(Float64, N, N, nmax+1)
    Pf = zeros(Float64, N, N, nmax+1)
    R = Matrix{Float64}(I, N, N)
    K = zeros(Float64, N, N)
    H = Matrix{Float64}(I, N, N)
    α = 1.5 # inflation factor
    
    println(Xa[:,1])
    
    Pa[:,:,1] = Matrix{Float64}(20I, N, N)
    
    Xa[:,1] = [1.00001, 0., 0.]
    println(Xa[:,1])
    
    for i=1:nmax
        Xf[:, i+1] = RK4(Lorentz63, dt, Xa[:,i])
        if mod(i+1, dstep) == 0
            M = makeM(Xf[:,i+1], N, dt)
            Pf[:,:,i+1] = α*M*Pa[:,:,i]*M'
            K = Pf[:,:,i+1]*H'*inv(H*Pf[:,:,i+1]*H' + R)
            Xa[:,i+1] = Xf[:,i+1] + K*(y[:,i+1]-H*Xf[:,i+1])
            Pa[:,:,i+1] = (I - K*H)*Pf[:,:,i+1]
        else
            Xa[:,i+1] = Xf[:,i+1]
            Pa[:,:, i+1] = Pa[:,:, i]
        end
    end

    # 結果の可視化
    plot_start=1
    plot_end=10000
    fig = plt.figure(figsize=(9, 7.))
    ax1 = fig.add_subplot(211)
    ax1.plot(x0[1,plot_start:plot_end], label="x1: true")
    ax1.plot(x1[1,plot_start:plot_end], label="x1: no DA")
    #ax1.plot(y[1,plot_start:plot_end], label="x1: obs.", "o", markersize=2.5)
    
    ax2 = fig.add_subplot(212)
    ax2.plot(x0[3,plot_start:plot_end], label="x3: true")
    ax2.plot(x1[3,plot_start:plot_end], label="x3: no DA")
    #ax2.plot(y[3,plot_start:plot_end], label="x3: obs.", "o", markersize=2.5)

    ax1.set_xlabel("step")
    ax1.set_ylabel("x1")
    ax1.legend()
    ax2.set_xlabel("step")
    ax2.set_ylabel("x3")
    ax2.legend()
    plt.savefig("true_noDA.jpeg")

    fig = plt.figure(figsize=(9, 7.))
    ax1 = fig.add_subplot(211)
    ax1.plot(x0[1,plot_start:plot_end], label="x1: true")
    ax1.plot(Xa[1,plot_start:plot_end], label="x1: DA",)
    #ax1.plot(y[1,plot_start:plot_end], label="u1", "o", markersize=2.5)
    
    ax2 = fig.add_subplot(212)
    ax2.plot(x0[3,plot_start:plot_end], label="x3: true")
    ax2.plot(Xa[3,plot_start:plot_end], label="x3: DA",)
    #ax2.plot(y[3,plot_start:plot_end], label="u3", "o", markersize=2.5)
    
    ax1.set_xlabel("step")
    ax1.set_ylabel("x1")
    ax1.legend()
    ax2.set_xlabel("step")
    ax2.set_ylabel("x3")
    ax2.legend()
    plt.savefig("true_DA.jpeg")
    
    rms_a = zeros(nmax+1)
    rms_o = zeros(nmax+1)
    trPa = zeros(nmax+1)
    for i=1:nmax
        trPa[i] = sqrt(tr(Pa[:,:,i])/N)
        rms_a[i] = norm(Xa[:,i]-x0[:,i])/sqrt(N)
        rms_o[i] = norm(y[:,i]-x0[:,i])/sqrt(N)
    end
    
    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.set_ylim(-1,10)
    ax1.plot(rms_a[plot_start:plot_end], label="ana.")
    ax1.plot(rms_o[plot_start:plot_end], label="obs.", "o", markersize=2.5)
    ax1.plot(trPa[plot_start:plot_end], label="Trace")
    ax1.legend()
    
    ax = plt.figure().add_subplot(projection="3d")
    ax.plot(x0[1,plot_start:plot_end], x0[2,plot_start:plot_end], x0[3,plot_start:plot_end], )
    ax.plot(Xa[1,plot_start:plot_end], Xa[2,plot_start:plot_end], Xa[3,plot_start:plot_end], )
    #ax.plot(x1[1,100:300], x1[2,100:300], x1[3,100:300], )
    
    return x0, x1, Xa
end

実行と真値とデータ同化結果,データ同化なしの結果の出力

xtrue, x_noDA, Xa = main()

h5open("L63_true_da.h5", "w") do file
    write(file, "xtrue", xtrue)
    write(file, "Xa", Xa)
    write(file, "x_noDA", x_noDA)
end

ローレンツアトラクタの可視化

using Plots
using HDF5

file = h5open("L63_true_da.h5", "r") 
xtrue = read(file, "xtrue")
x_noDA = read(file, "x_noDA")
Xa = read(file, "Xa")

anim = @animate for i=2:100:9000
    plot(xtrue[1,i:i+300], xtrue[2,i:i+300],xtrue[3,i:i+300], label="true", 
        xlim = (-50, 50), ylim = (-50, 50), zlim = (0, 60),)
    plot!(Xa[1,i:i+300], Xa[2,i:i+300], Xa[3,i:i+300], label="DA", 
        xlim = (-50, 50), ylim = (-50, 50), zlim = (0, 60),)
    plot!(x_noDA[1,i:i+300], x_noDA[2,i:i+300], x_noDA[3,i:i+300], label="noDA", 
        xlim = (-50, 50), ylim = (-50, 50), zlim = (0, 60),)
    #plot!(sol2[1,i:i+300], sol2[2,i:i+300], sol2[3,i:i+300], 
    #    xlim = (-50, 50), ylim = (-50, 50), zlim = (0, 60), label="u0_2")
end

gif(anim, "lorentz3D-da.gif", fps = 2)

真値とデータ同化なしの解の比較。途中からずれてます。
true_noDA.jpeg

真値とデータ同化後の解の比較
true_DA.jpeg

5
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?