2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

pandas 自己流チートシート

Last updated at Posted at 2018-11-25

#チートシート(翻訳含む)
英語)https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf
日本語)https://qiita.com/s_katagiri/items/4cd7dee37aae7a1e1fc0

上記で大体わかるが、
データ加工など痒い所に手が届かない点があるので、自分なりに書く
(かぶっているところもあるが気にしない)

#詳細(随時更新予定)


import numpy as np
import pandas as pd

df = pd.DataFrame(
    {"Age":[22,33,44],
     "Sex":["man","woman","man"],
     "Embarked":["S","C","Q"],
     "FamilyS" :[1,2,4],
     "Name":["TORO Mr. BU","A Miss. gao","ninnniku"]
    }
)

#Use CSV
df.to_csv("file_name")
df=pd.read_csv("file_name")

### treat data
#checknull
null_val = df.isnull().sum()
percent = 100 * df.isnull().sum()/len(df)
kesson_table = pd.concat([null_val, percent], axis=1)
kesson_table.columns= ['欠損','%']

print(df)
#fillnull
df["Age"] = df["Age"].fillna(df["Age"].median())

#data change
#1. replace
df["Embarked"] = df["Embarked"].replace([0,1,2],[-1,-2,-3])

#2. map
df['Embarked'] = df['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2, 'Unknown': 3} ).astype(int)

#3.apply
df["Embarked"] = df["Embarked"].apply(lambda x:0 if x == "S" else x)
df['Sex'] = df['Sex'].apply(lambda x: 1 if x == 'male' else 0)
def family(x):
    if x < 2:
        return 'Single'
    elif x == 2:
        return 'Couple'
    elif x <= 4:
        return 'InterM'
    else:
        return 'Large'
df['Embarked'] = df['Embarked'].apply(family)

#extract
df['Salutation'] = df.Name.str.extract(' ([A-Za-z]+).', expand=False)

#extract jyoken
df = df[df.Age > 0]

# convert row and columns
df.T

# unique
df["Age"].unique()

# group by
df.groupby(by="Age").sum().sort_values("Embarked")
df.groupby(by="Age").head(1)

#statics
df.corr()      #相関
df.describe()  #概要


2
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?