2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

【学習メモ】無茶振りHaskell to Rustチャレンジ!

Last updated at Posted at 2024-08-17

こんにちは!
昨日に引き続き、Rustの学習メモです。
今日は、Rustの文法を手に馴染ませるため、様々なアルゴリズムにチャレンジしたいと思います。

Rustを始めてまだ1週間程度ですので、不十分なコードあるかもしれませんが、ご容赦ください。

ルール

  1. 対象のアルゴリズムを実装するコードを、ChatGPTにHaskellで書いてもらう
  2. そのコードを、Rustで可能な限り再現する

純粋関数型言語であるHaskellのコードに、どこまで近づけるか!
チャレンジしていきたいと思います!

基本

まずは基本的なやつから!

階乗

Haskell
fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n - 1)
Rust
fn fact(n: i32) -> i32 {
    match n {
        0 => 1,
        _ => n * fact(n - 1)
    }
}

最大公約数(ユークリッドの互除法)

Haskell
gcd' :: Int -> Int -> Int
gcd' a 0 = a
gcd' a b = gcd' b (a `mod` b)
Rust
fn gcd(a: i32, b: i32) -> i32 {
    match (a, b) {
        (_, 0) => a,
        (_, _) => gcd(b, a % b)
    }
}

FizzBuzz

Haskell
fizzBuzz :: Int -> String
fizzBuzz n = case (n `mod` 3, n `mod` 5) of
  (0, 0) -> "FizzBuzz"
  (0, _) -> "Fizz"
  (_, 0) -> "Buzz"
  _      -> show n

main :: IO ()
main = do
  mapM_ (putStrLn . fizzBuzz) [1..100]
Rust
fn fizz_buzz(n: i32) -> String {
    match (n % 3, n % 5) {
        (0, 0) => String::from("FizzBuzz"),
        (0, _) => String::from("Fizz"),
        (_, 0) => String::from("Buzz"),
        _ => n.to_string()
    }
}

fn main() {
    (1..=100)
        .map(fizz_buzz)
        .for_each(|x| println!("{}", x));
}

この辺はmatch式使えば再現できますね!
パターンマッチが便利!

数列

四角数列

Haskell
squareNumbers :: [Integer]
squareNumbers = [n ^ 2 | n <- [1..]]

main = do
  print $ take 10 squareNumbers
Rust
fn square_numbers() -> impl Iterator<Item = u64> {
    (1..).map(|x| x * x)
}

fn main() {
    let squares: Vec<u64> = square_numbers().take(10).collect();
    println!("{:?}", squares)
}

無限リストからの生成!
式がシンプルで分かりやすい!

フィボナッチ数列

Haskell
fibonacci :: [Integer]
fibonacci = 1 : 1 : zipWith (+) fibonacci (tail fibonacci)

main = do
  print $ take 10 fibonacci
Rust
fn fibonacci() -> impl Iterator<Item = u64>  {
    (0..).into_iter()
        .scan((0, 1), |state, _| {
            let next = state.0 + state.1;
            state.0 = state.1;
            state.1 = next;
            Some(state.0)
        })
}

fn main() {
    let fibo: Vec<u64> = fibonacci().take(10).collect();
    println!("{:?}", fibo);
}

無限リストからフィボナッチ数列の生成
Haskell美しすぎてやばい...
Rustで頑張ってみる...ワイにはこれが限界か...

ソート

クイックソート

Haskell
quickSort :: Ord a => [a] -> [a]
quickSort [] = []
quickSort (x:xs) =
  quickSort [y | y <- xs, y <= x] ++ [x] ++ quickSort [y | y <- xs, y > x]

main = do
  let list = [3, 2, 1, 9, 5, 6, 4, 8, 7, 10]
  print $ quickSort list
Rust
fn quick_sort(arr: &Vec<i32>) -> Vec<i32> {
    if arr.len() == 0 {
        return arr.to_vec()
    }

    let pivot = arr[0];
    let slice = &arr[1..];

    let left = slice.iter().cloned()
        .filter(|&x| x <= pivot).collect();

    let right = slice.iter().cloned()
        .filter(|&x| x > pivot).collect();

    [quick_sort(&left), vec![pivot], quick_sort(&right)].concat()
}

fn main() {
    let v = vec![3, 2, 1, 9, 5, 6, 4, 8, 7, 10];
    println!("{:?}", quick_sort(&v));
}

ハアハア...
可能な限り近づけてはみた...
Haskellの(x:xs)とかチートですわ...リスト内包表記も便利すぎるし

探索

二分探索

Haskell
binarySearch :: Ord a => [a] -> a -> Maybe Int
binarySearch xs target = binarySearchHelper xs target 0 (length xs - 1)

binarySearchHelper :: Ord a => [a] -> a -> Int -> Int -> Maybe Int
binarySearchHelper xs target low high
  | low > high = Nothing
  | target == midVal = Just mid
  | target < midVal = binarySearchHelper xs target low (mid - 1)
  | target > midVal = binarySearchHelper xs target (mid + 1) high
  where
    mid = low + (high - low) `div` 2
    midVal = xs !! mid

main = do
  let list = [1, 3, 5, 7, 9, 11, 13, 15]
  let target = 7
  print $ binarySearch list target
Rust
use std::cmp::Ordering;

fn binary_search<T: Ord>(slices: &[T], target: &T) -> Option<i32> {
    binary_search_helper(slices, target, 0, (slices.len() - 1) as i32)
}

fn binary_search_helper<T: Ord>(slices: &[T], target: &T, low: i32, high: i32) -> Option<i32> {
    if low > high {
        return None;
    }

    let mid = low + (high - low) / 2;
    let mid_val = &slices[mid as usize];

    match mid_val.cmp(target) {
        Ordering::Equal => Some(mid),
        Ordering::Greater => binary_search_helper(slices, target, low, mid - 1),
        Ordering::Less => binary_search_helper(slices, target, mid + 1, high)
    }
}

fn main() {
    let list = vec![1, 3, 5, 7, 9, 11, 13, 15];
    let target = 7;

    match binary_search(&list, &target) {
        Some(index) => println!("target found! index: {}", index),
        None => println!("target not found")
    }
}

遜色ない感じで実装できたかな?

まとめ

いかがだったでしょうか。
基本的なアルゴリズムからクイックソート、二分探索まで、いろいろトライできたのではと思います。
ではまた!

2
1
2

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?