1
0

More than 1 year has passed since last update.

(無限積÷無限積)が対数となる場合

Posted at

二次式

x^2 - y^2 = \left( x + y \right) \left( x - y \right)

から

\begin{eqnarray}
a - b
 & = & \left( \sqrt{a} + \sqrt{b} \right) \left( \sqrt{a} - \sqrt{b} \right)  \\
 & = & \left( a ^ \frac{1}{2} + b ^ \frac{1}{2} \right) \left( a ^ \frac{1}{2} - b ^ \frac{1}{2} \right) \\
 & = & \left( a ^ \frac{1}{2} + b ^ \frac{1}{2} \right) \left( a ^ \frac{1}{4} + b ^ \frac{1}{4} \right) \left( a ^ \frac{1}{4} - b ^ \frac{1}{4} \right) \\
 & = & \left( a ^ \frac{1}{2} + b ^ \frac{1}{2} \right) \left( a ^ \frac{1}{4} + b ^ \frac{1}{4} \right) \left( a ^ \frac{1}{8} + b ^ \frac{1}{8} \right) \left( a ^ \frac{1}{8} - b ^ \frac{1}{8} \right) \\
 & & \cdots \\
 & = & \left( a ^ \frac{1}{2} + b ^ \frac{1}{2} \right) \left( a ^ \frac{1}{4} + b ^ \frac{1}{4} \right) \left( a ^ \frac{1}{8} + b ^ \frac{1}{8} \right) \cdots \left( a ^ {2^{-n}} + b ^ {2^{-n}} \right) \left( a ^ {2^{-n}} - b ^ {2^{-n}} \right) \\
 & = & \left( a ^ {2^{-n}} - b ^ {2^{-n}} \right) \prod_{k=1}^{n} \left( a ^ {2^{-k}} + b ^ {2^{-k}} \right) \\
\frac{ a - b }{ a ^ {2^{-n}} - b ^ {2^{-n}} } & = & \prod_{k=1}^{n} \left( a ^ {2^{-k}} + b ^ {2^{-k}} \right) \\
\end{eqnarray}

を考えます。すると

\begin{eqnarray}
\frac{ s - t }{ u - v }
 & = & \frac
 { s ^ {2^{-n}} - t ^ {2^{-n}} }
 { u ^ {2^{-n}} - v ^ {2^{-n}} }
 \cdot \frac
 { \prod_{k=1}^{n} \left( s ^ {2^{-k}} + t ^ {2^{-k}} \right) }
 { \prod_{k=1}^{n} \left( u ^ {2^{-k}} + v ^ {2^{-k}} \right) }
\end{eqnarray}

も考えることができます。式の一部

\frac
 { s ^ {2^{-n}} - t ^ {2^{-n}} }
 { u ^ {2^{-n}} - v ^ {2^{-n}} }

を $n \to \infty$ の極限として Mathematica 様に喰わせると

\lim_{n \to \infty} \frac{ s ^ {2^{-n}} - t ^ {2^{-n}} }{ u ^ {2^{-n}} - v ^ {2^{-n}} } = \frac{ \log s - \log t }{ \log u - \log v } = \frac{ \log \frac{s}{t} }{ { \log \frac{u}{v} }} = \log_{\frac{u}{v}} \frac{s}{t}

を求めてくれました。よって

\begin{eqnarray}
\frac
 { \prod_{k=1}^{\infty} \left( s ^ {2^{-k}} + t ^ {2^{-k}} \right) }
 { \prod_{k=1}^{\infty} \left( u ^ {2^{-k}} + v ^ {2^{-k}} \right) }
 & = & \frac{ s - t }{ u - v } \cdot \frac{ \log u - \log v }{ \log s - \log t } \\
 & = & \frac{ s - t }{ u - v } \cdot \frac{ \log \frac{u}{v} }{ \log \frac{s}{t} } \\
 & = & \frac{ s - t }{ u - v } \cdot \log_\frac{s}{t} \frac{u}{v} \\
 & = & \log_\frac{s}{t} \left( \frac{u}{v} \right)^{ \frac{ s - t }{ u - v } }  \\
\end{eqnarray}

となるようです。

1
0
4

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0