0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

半精度浮動小数点型

Last updated at Posted at 2023-11-03

IEEE 754 - Binary16 形式

負符号を $S$, 指数部を $E$, 小数部を $T$ とすると、ビット パターンは

負符号 指数部 $E$ 小数部 $T$
$S$ $E_0 E_1 E_2 E_3 E_4$ $d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_{10}$

(計 16 ビット)となっていて、各値は

\begin{eqnarray}
S & = & \{ 0, 1 \} \\
E & = & \{ 0,1,2, \cdots,31 \} \\
T & = & \{ 0,1,2, \cdots,1023 \} \\
\end{eqnarray}

の範囲です。$E$ が $0$ の場合は

\begin{eqnarray}
N & = & \left( -1^{S} \right) \times 2^{-15} \times \left( \frac{T}{ 2^{10} } \right) \\
\end{eqnarray}

$E$ が $1$ から $30$ の場合は

\begin{eqnarray}
N & = & \left( -1^{S} \right) \times 2^{E-15} \times \left( 1 + \frac{T}{ 2^{10} } \right) \\
\end{eqnarray}

$E$ が $31$ の場合は

\begin{eqnarray}
T & = & 0 \space \cdots \space 無限大 \\
T & \ne & 0 \space \cdots \space 非数 \\
\end{eqnarray}

で、非数 (NaN) には、沈黙非数 (qNaN) と合図非数 (sNaN) があり

\begin{eqnarray}
d_1 & = & 0 \space \cdots \space sNaN \\
d_1 & = & 1 \space \cdots \space qNaN \\
\end{eqnarray}

を表します。

表現可能な数値

指数部 $E$ によって表現できる数値が変化します。対応表は以下の通り。

+----+----------------------+--------------------------------+-----------------------------+
|  E | Start                | End                            | Step                        |
+----+------- --------------+--------------------------------+-----------------------------+
|  0 |     0.00000000000000 |     0.000060975551605224609375 |  0.000000059604644775390625 |
+----+----------------------+--------------------------------+-----------------------------+
|  1 |     0.00006103515625 |     0.000122010707855224609375 |  0.000000059604644775390625 |
|  2 |     0.0001220703125  |     0.00024402141571044921875  |  0.00000011920928955078125  |
|  3 |     0.000244140625   |     0.0004880428314208984375   |  0.0000002384185791015625   |
|  4 |     0.00048828125    |     0.000976085662841796875    |  0.000000476837158203125    |
|  5 |     0.0009765625     |     0.00195217132568359375     |  0.00000095367431640625     |
|  6 |     0.001953125      |     0.0039043426513671875      |  0.0000019073486328125      |
|  7 |     0.00390625       |     0.007808685302734375       |  0.000003814697265625       |
+----+----------------------+--------------------------------+-----------------------------+
|  8 |     0.0078125        |     0.01561737060546875        |  0.00000762939453125        |
|  9 |     0.015625         |     0.0312347412109375         |  0.0000152587890625         |
| 10 |     0.03125          |     0.062469482421875          |  0.000030517578125          |
| 11 |     0.0625           |     0.12493896484375           |  0.00006103515625           |
| 12 |     0.125            |     0.2498779296875            |  0.0001220703125            |
| 13 |     0.25             |     0.499755859375             |  0.000244140625             |
| 14 |     0.5              |     0.99951171875              |  0.00048828125              |
+----+----------------------+--------------------------------+-----------------------------+
| 15 |     1.0              |     1.9990234375               |  0.0009765625               |
| 16 |     2.0              |     3.998046875                |  0.001953125                |
| 17 |     4.0              |     7.99609375                 |  0.00390625                 |
| 18 |     8.0              |    15.9921875                  |  0.0078125                  |
| 19 |    16.0              |    31.984375                   |  0.015625                   |
| 20 |    32.0              |    63.96875                    |  0.03125                    |
| 21 |    64.0              |   127.9375                     |  0.0625                     |
| 22 |   128.0              |   255.875                      |  0.125                      |
| 23 |   256.0              |   511.75                       |  0.25                       |
| 24 |   512.0              |  1023.5                        |  0.5                        |
+----+----------------------+--------------------------------+-----------------------------+
| 25 |  1024.0              |  2047.0                        |  1.0                        |
| 26 |  2048.0              |  4094.0                        |  2.0                        |
| 27 |  4096.0              |  8188.0                        |  4.0                        |
| 28 |  8192.0              | 16376.0                        |  8.0                        |
| 29 | 16384.0              | 32752.0                        | 16.0                        |
| 30 | 32768.0              | 65504.0                        | 32.0                        |
+----+--------------------------------+--------------------------------+-----------------------------+

プログラム

内部では float 型で保持し、16bit データとの変換(丸めなしの切り捨て)以外は float 型任せです。

float16.py
#!/usr/bin/env python3

import math
import numbers


def binary16_to_float(binary):
    sign = (binary >> 15) & 1
    exponent = (binary >> 10) & 0x1f
    significand = binary & 0x3ff
    if exponent == 31:
        aval = math.nan if significand else math.inf
    else:
        if exponent != 0:
            significand |= 0x400
            exponent -= 1
        aval = significand * pow(2.0, exponent - 24)
    return -aval if sign else aval


def float_to_binary16(value):
    if not isinstance(value, float):
        value = float(value)
    if math.isnan(value):
        # return 0x7dff # sNaN
        return 0x7fff   # qNaN
    sign = 0x8000 if value.hex()[0] == '-' else 0
    if math.isinf(value):
        return sign | 0x7c00
    if value == 0:
        return sign
    significand, exponent = math.frexp(abs(value))
    exponent += 14
    if exponent <= 0:
        significand *= pow(2.0, exponent + 10)
        exponent = 0
    elif exponent < 31:
        significand *= 2048.0
    else:
        exponent = 31
        significand = 0
    return sign | (exponent << 10) | (math.trunc(significand) & 0x3ff)


class Float16(numbers.Real):
    TABLE = tuple(binary16_to_float(n) for n in range(1 << 16))

    frombinary = binary16_to_float
    tobinary = float_to_binary16

    def __init__(self, *args):
        self.value = Float16.TABLE[Float16.tobinary(float(*args))]

    def __hash__(self): return hash(self.value)

    def __repr__(self): return f'Float16({repr(self.value)})'
    def __format__(self, format_spec): return format(self.value, format_spec)

    def __lt__(self, rhs): return self.value < rhs
    def __le__(self, rhs): return self.value <= rhs
    def __eq__(self, rhs): return self.value == rhs
    def __ge__(self, rhs): return self.value >= rhs
    def __gt__(self, rhs): return self.value > rhs

    def __bool__(self): return bool(self.value)
    def __float__(self): return self.value

    def __abs__(self): return Float16(abs(self.value))
    def __neg__(self): return Float16(-self.value)
    def __pos__(self): return Float16(self.value)

    def __ceil__(self): return math.ceil(self.value)
    def __floor__(self): return math.floor(self.value)
    def __trunc__(self): return math.trunc(self.value)

    def __round__(self, ndigits=None):
        rval = round(self.value, ndigits)
        return rval if ndigits is None else Float16(rval)

    def __add__(self, rhs): return self.value + rhs
    def __mul__(self, rhs): return self.value * rhs
    def __pow__(self, rhs): return pow(self.value, rhs)
    def __floordiv__(self, rhs): return self.value // rhs
    def __truediv__(self, rhs): return self.value / rhs
    def __mod__(self, rhs): return self.value % rhs

    def __divmod__(self, rhs): return divmod(self.value, rhs)

    def __radd__(self, lhs): return lhs + self.value
    def __rmul__(self, lhs): return lhs * self.value
    def __rpow__(self, lhs): return pow(lhs, self.value)
    def __rfloordiv__(self, lhs): return lhs // self.value
    def __rtruediv__(self, lhs): return lhs / self.value
    def __rmod__(self, lhs): return lhs % self.value

    def __iadd__(self, rhs):
        self.value = float(Float16(self.value + rhs))
        return self

    def __isub__(self, rhs):
        self.value = float(Float16(self.value - rhs))
        return self

    def __imul__(self, rhs):
        self.value = float(Float16(self.value * rhs))
        return self

    def __ipow__(self, rhs):
        self.value = float(Float16(pow(self.value, rhs)))
        return self

    def __ifloordiv__(self, rhs):
        self.value = float(Float16(self.value // rhs))
        return self

    def __itruediv__(self, rhs):
        self.value = float(Float16(self.value / rhs))
        return self

    def __imod__(self, rhs):
        self.value = float(Float16(self.value % rhs))
        return self

    def hex(self): return self.value.hex()
    def is_integer(self): return self.value.is_integer()

    def binary(self): return Float16.tobinary(self.value)

    @staticmethod
    def fromhex(string):
        return Float16(float.fromhex(string))
実行結果
>>> from float16 import Float16
>>> x = Float16(1.0)
>>> x
Float16(1.0)
>>> x.binary()
15360
>>> hex(x.binary())
'0x3c00'
>>> bin(x.binary())
'0b11110000000000'
>>> x + 1/(1<<11)
1.00048828125
>>> x += 1/(1<<11)
>>> x
Float16(1.0)
>>> x + 1/(1<<10)
1.0009765625
>>> x += 1/(1<<10)
>>> x
Float16(1.0009765625)
>>> x.binary()
15361
>>> hex(x.binary())
'0x3c01'
>>> bin(x.binary())
'0b11110000000001'
>>> x = Float16(1.0)
>>> x /= 1/(1<<16)
>>> x
Float16(inf)
>>> x.binary()
31744
>>> hex(x.binary())
'0x7c00'
>>> bin(x.binary())
'0b111110000000000'
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?