1. きっかけ
前回の投稿でコマンドラインで学習することが可能になりました。
しかし、引数で渡せず、yamlファイルを用意しなければいけないパラメータがあったりする点が面倒なので、Notebook形式で学習できる方法を探ります。
MacBookAir(2025年1月初売りで購入でウキウキ)
CPU:M3
ユニファイドメモリー:24GB
SSD:1T
バージョン関連
Python==3.11.8
mlx_lm==0.21.1
使用したモデルと学習データ
モデル:llm-jp/llm-jp-3-3.7b
(インストラクションチューニングされていないモデル)
学習データ:llm-jp/magpie-sft-v1.0 からランダムに2000データを使用
コマンドラインでの学習の時と、モデルと学習データを変えました。理由は以下の通りです。
- メモリーのスワップがひどすぎた
- 小さなモデルなのでシンプルなインストラクションチューニングで効果をわかりやすくしたい。
- Qiitaを書くまでの時間を少なくしたい。w
2. GitHubの熟読
久々にargparseを使うので、復習をしました。そんなレベルの人間です。
まず、ガッツリ、lora.pyを読みました。そのなかで着目したのはmain()
関数です。lora.py
を呼んだらこの関数が呼ばれる様になっているのが着目理由です。
ざっと説明すると、設定を読み込んで、run関数に引数を渡しています。
def main():
os.environ["TOKENIZERS_PARALLELISM"] = "true"
parser = build_parser() # コマンドライン引数の処理
args = parser.parse_args()
config = args.config # コマンドライン引数のconfigの処理
args = vars(args)
if config: # コマンドライン引数でconfigを受け取ったら、そのyamlファイルの読み込み
print("Loading configuration file", config)
with open(config, "r") as file:
config = yaml.load(file, yaml_loader)
# Prefer parameters from command-line arguments
for k, v in config.items():
if args.get(k, None) is None:
args[k] = v
# Update defaults for unspecified parameters
for k, v in CONFIG_DEFAULTS.items(): # 文字通り、指定されていないデフォルト設定の読み込み。
if args.get(k, None) is None:
args[k] = v
run(types.SimpleNamespace(**args)) # ここでrun関数に引数を渡す。
3. 作戦
上のmain関数の中にはyamlファイルを読み込むことが書かれています。読み込んだ内容と、指定していない項目はCONFIG_DEFAULTS
から読み取って、args
を作っている。
つまりCONFIG_DEFAULTSの内容を何かの変数にいれて、この変数をrunに渡せばいいってことじゃないですか!
決定!これで行こう
mlx_lmのGitHubにはyamlファイルのサンプルがありますので、CONFIG_DEFAULTS
に記載されていなくて、サンプルのyamlファイルにあるパラメータを探しましょう。
学習する層を指定して(絞って)あげたいのと、学習率のスケジューラを使おうかな。
# LoRA parameters can only be specified in a config file
lora_parameters:
# The layer keys to apply LoRA to.
# These will be applied for the last lora_layers
keys: ["self_attn.q_proj", "self_attn.v_proj"]
rank: 8
scale: 20.0
dropout: 0.0
# Schedule can only be specified in a config file, uncomment to use.
#lr_schedule:
# name: cosine_decay
# warmup: 100 # 0 for no warmup
# warmup_init: 1e-7 # 0 if not specified
# arguments: [1e-5, 1000, 1e-7] # passed to scheduler
学習する層を設定するのはlora_parameters
のkeys
になりそうです。これをアテンション層のQKV層のみを学習して、インストラクションチューニングしましょう。
モデルをプリントすると以下のような出力が出ます。カッコの中に書いてあるself_atten
とか、q_proj
などが層の名前になります。これを指定する場合はself_atten.q_proj
とすればいいです。この辺りはhuggingfaceやunslothのlora、PEFTなどの解説を読めばわかるはず。
Model(
(model): LlamaModel(
(embed_tokens): QuantizedEmbedding(99584, 3072, group_size=64, bits=4)
(layers.0): TransformerBlock(
(self_attn): Attention(
(q_proj): QuantizedLinear(input_dims=3072, output_dims=3072, bias=False, group_size=64, bits=4)
(k_proj): QuantizedLinear(input_dims=3072, output_dims=3072, bias=False, group_size=64, bits=4)
(v_proj): QuantizedLinear(input_dims=3072, output_dims=3072, bias=False, group_size=64, bits=4)
(o_proj): QuantizedLinear(input_dims=3072, output_dims=3072, bias=False, group_size=64, bits=4)
(rope): RoPE(128, traditional=False)
)
(mlp): MLP(
(gate_proj): QuantizedLinear(input_dims=3072, output_dims=8192, bias=False, group_size=64, bits=4)
(down_proj): QuantizedLinear(input_dims=8192, output_dims=3072, bias=False, group_size=64, bits=4)
(up_proj): QuantizedLinear(input_dims=3072, output_dims=8192, bias=False, group_size=64, bits=4)
)
(input_layernorm): RMSNorm(3072, eps=1e-05)
(post_attention_layernorm): RMSNorm(3072, eps=1e-05)
)
(layers.1): TransformerBlock(
(self_attn): Attention(
(q_proj): QuantizedLinear(input_dims=3072, output_dims=3072, bias=False, group_size=64, bits=4)
(k_proj): QuantizedLinear(input_dims=3072, output_dims=3072, bias=False, group_size=64, bits=4)
(v_proj): QuantizedLinear(input_dims=3072, output_dims=3072, bias=False, group_size=64, bits=4)
(o_proj): QuantizedLinear(input_dims=3072, output_dims=3072, bias=False, group_size=64, bits=4)
< 以下省略 >
4. パラメータを設定する
4-1. デフォルト値の読み込み
from mlx_lm import lora
training_args = lora.CONFIG_DEFAULTS # デフォルト引数をargsという変数に格納
print(training_args)
# {'model': 'mlx_model',
# 'train': False,
# 'fine_tune_type': 'lora',
# 'data': 'data/',
# 'seed': 0,
# 'num_layers': 16,
# 'batch_size': 4,
# 'iters': 1000,
# 'val_batches': 25,
# 'learning_rate': 1e-05,
# 'steps_per_report': 10,
# 'steps_per_eval': 200,
# 'resume_adapter_file': None,
# 'adapter_path': 'adapters',
# 'save_every': 100,
# 'test': False,
# 'test_batches': 500,
# 'max_seq_length': 2048,
# 'config': None,
# 'grad_checkpoint': False,
# 'lr_schedule': None,
# 'lora_parameters': {'rank': 8, 'alpha': 16, 'dropout': 0.0, 'scale': 10.0}}
確認出来たらこれらの設定を変更します。
4-2. パラメータの設定
args変数にいれたデフォルトののパラメータを更新しちゃいましょう。
mlx_path = "llm-jp-3-3.7b" # このフォルダに量子化したモデルを保存してあります。
dataset_path = "./magpie" # このフォルダに学習、評価、テストのjsonlを保存してあります。
training_args['model'] = mlx_path# モデルのレポジトリ名orローカルのフォルダパス
training_args['data'] = saved_dataset # データセットのパス
args['train'] = True # 学習モードオン
training_args['max_seq_length'] = 1024 * 2 # 推論トークン数
training_args['iters'] = 1000 # 学習するミニバッチ数
training_args['batch_size'] = 2 # 学習率
training_args['learning_rate'] = 3e-04 # 学習率:大き目で効果を出やすく
training_args['steps_per_report'] = 5 # 何ステップごとに学習状態を表示するか
training_args['val_batches'] = 2 # 評価バッチ数
training_args['test_batches'] = 2 # テストバッチ数
# ここから下がコマンドラインでの学習ではyamlファイルで設定しなければならなかった項目
training_args['lora_parameters'] = {
'rank': 8,
'alpha': 64, # ここも効果が出やすいように大きくしました
'dropout': 0.2,
'scale': 10.0,
'keys': [ # ここを設定したかった!
"self_attn.q_proj", # modelをプリントして、
"self_attn.k_proj", # 学習したい層を指定しましょう
"self_attn.v_proj"
]}
args['lr_schedule'] = { # 学習率のスケジュール設定(まだ詳細はわかっていない💦)
'name': 'cosine_decay',
'warmup': 50,
'warmup_init': 1e-7,
'arguments': [3e-5, 1000, 1e-7],
}
print(training_args)
# {'model': 'llm-jp-3-3.7b',
# 'train': True,
# 'fine_tune_type': 'lora',
# 'data': './magpie',
# 'seed': 0,
# 'num_layers': 16,
# 'batch_size': 2,
# 'iters': 1000,
# 'val_batches': 2,
# 'learning_rate': 0.0003,
# 'steps_per_report': 5,
# 'steps_per_eval': 200,
# 'resume_adapter_file': None,
# 'adapter_path': 'adapters',
# 'save_every': 100,
# 'test': False,
# 'test_batches': 2,
# 'max_seq_length': 2048,
# 'config': None,
# 'grad_checkpoint': False,
# 'lr_schedule': {'name': 'cosine_decay',
# 'warmup': 50,
# 'warmup_init': 1e-07,
# 'arguments': [3e-05, 1000, 1e-07]},
# 'lora_parameters': {'rank': 8,
# 'alpha': 64,
# 'dropout': 0.2,
# 'scale': 10.0,
# 'keys': ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj']}}
うっす、設定ができた!
じゃ、学習に移ろう。
【追記】
iters
は「学習するミニバッチをいくつ学習するかという数」だと思います。↓
https://github.com/ml-explore/mlx-examples/blob/52c41b5b5abfdd4ee1c35bd362162b1dc7a62138/llms/mlx_lm/tuner/trainer.py#L223
ご意見いただけると嬉しいです。
5. 学習の実行
いよいよです。伊予は愛媛です。はい。つっこんで。
学習の実行!
import types
lora.run(types.SimpleNamespace(**training_args))
作った辞書をjsonみたいな形式に変換してからlora.pyのrun関数に渡すだけ。
ここはlora.pyのmain関数を参考にしました。
学習時のアウトプット
Loading pretrained model
Loading datasets
Training
Trainable parameters: 0.109% (4.129M/3782.913M)
Starting training..., iters: 1000
Iter 1: Val loss 2.134, Val took 3.796s
Iter 5: Train loss 2.155, Learning Rate 2.492e-06, It/sec 0.174, Tokens/sec 103.054, Trained Tokens 2958, Peak mem 8.977 GB
Iter 10: Train loss 1.985, Learning Rate 5.482e-06, It/sec 0.117, Tokens/sec 90.683, Trained Tokens 6840, Peak mem 10.557 GB
Iter 15: Train loss 2.566, Learning Rate 8.472e-06, It/sec 0.206, Tokens/sec 98.132, Trained Tokens 9223, Peak mem 10.806 GB
Iter 20: Train loss 2.073, Learning Rate 1.146e-05, It/sec 0.159, Tokens/sec 100.857, Trained Tokens 12403, Peak mem 10.806 GB
Iter 25: Train loss 2.583, Learning Rate 1.445e-05, It/sec 0.235, Tokens/sec 96.982, Trained Tokens 14470, Peak mem 10.806 GB
Iter 30: Train loss 1.880, Learning Rate 1.744e-05, It/sec 0.146, Tokens/sec 98.015, Trained Tokens 17817, Peak mem 10.806 GB
Iter 35: Train loss 1.967, Learning Rate 2.043e-05, It/sec 0.202, Tokens/sec 98.188, Trained Tokens 20245, Peak mem 10.806 GB
Iter 40: Train loss 1.807, Learning Rate 2.342e-05, It/sec 0.143, Tokens/sec 98.483, Trained Tokens 23691, Peak mem 10.806 GB
Iter 45: Train loss 1.956, Learning Rate 2.641e-05, It/sec 0.161, Tokens/sec 97.086, Trained Tokens 26714, Peak mem 13.110 GB
Iter 50: Train loss 1.891, Learning Rate 2.940e-05, It/sec 0.202, Tokens/sec 99.258, Trained Tokens 29174, Peak mem 13.110 GB
Iter 55: Train loss 1.800, Learning Rate 3.000e-05, It/sec 0.139, Tokens/sec 97.348, Trained Tokens 32671, Peak mem 13.110 GB
Iter 60: Train loss 1.659, Learning Rate 3.000e-05, It/sec 0.189, Tokens/sec 98.076, Trained Tokens 35260, Peak mem 13.110 GB
Iter 65: Train loss 1.637, Learning Rate 2.999e-05, It/sec 0.123, Tokens/sec 97.735, Trained Tokens 39223, Peak mem 13.110 GB
Iter 70: Train loss 1.655, Learning Rate 2.998e-05, It/sec 0.178, Tokens/sec 99.309, Trained Tokens 42007, Peak mem 13.110 GB
Iter 75: Train loss 1.628, Learning Rate 2.996e-05, It/sec 0.133, Tokens/sec 96.343, Trained Tokens 45625, Peak mem 13.242 GB
Iter 80: Train loss 1.720, Learning Rate 2.994e-05, It/sec 0.153, Tokens/sec 97.010, Trained Tokens 48795, Peak mem 13.242 GB
Iter 85: Train loss 1.730, Learning Rate 2.992e-05, It/sec 0.163, Tokens/sec 96.918, Trained Tokens 51768, Peak mem 13.242 GB
Iter 90: Train loss 1.591, Learning Rate 2.989e-05, It/sec 0.170, Tokens/sec 97.040, Trained Tokens 54624, Peak mem 13.242 GB
Iter 95: Train loss 1.742, Learning Rate 2.986e-05, It/sec 0.142, Tokens/sec 95.143, Trained Tokens 57983, Peak mem 13.242 GB
Iter 100: Train loss 1.597, Learning Rate 2.983e-05, It/sec 0.114, Tokens/sec 94.004, Trained Tokens 62099, Peak mem 14.577 GB
Iter 100: Saved adapter weights to adapters/adapters.safetensors and adapters/0000100_adapters.safetensors.
Iter 105: Train loss 1.621, Learning Rate 2.979e-05, It/sec 0.141, Tokens/sec 96.370, Trained Tokens 65520, Peak mem 14.577 GB
Iter 110: Train loss 1.643, Learning Rate 2.975e-05, It/sec 0.119, Tokens/sec 93.920, Trained Tokens 69466, Peak mem 14.577 GB
Iter 115: Train loss 1.670, Learning Rate 2.971e-05, It/sec 0.137, Tokens/sec 94.276, Trained Tokens 72913, Peak mem 14.577 GB
Iter 120: Train loss 1.734, Learning Rate 2.966e-05, It/sec 0.160, Tokens/sec 96.645, Trained Tokens 75940, Peak mem 14.577 GB
Iter 125: Train loss 1.613, Learning Rate 2.961e-05, It/sec 0.124, Tokens/sec 94.691, Trained Tokens 79745, Peak mem 14.729 GB
Iter 130: Train loss 1.614, Learning Rate 2.955e-05, It/sec 0.168, Tokens/sec 94.766, Trained Tokens 82560, Peak mem 14.729 GB
Iter 135: Train loss 1.898, Learning Rate 2.949e-05, It/sec 0.275, Tokens/sec 96.648, Trained Tokens 84320, Peak mem 14.729 GB
Iter 140: Train loss 1.631, Learning Rate 2.943e-05, It/sec 0.138, Tokens/sec 96.271, Trained Tokens 87797, Peak mem 14.729 GB
Iter 145: Train loss 1.609, Learning Rate 2.937e-05, It/sec 0.135, Tokens/sec 96.187, Trained Tokens 91364, Peak mem 14.729 GB
Iter 150: Train loss 1.610, Learning Rate 2.930e-05, It/sec 0.164, Tokens/sec 96.281, Trained Tokens 94304, Peak mem 14.729 GB
Iter 155: Train loss 1.601, Learning Rate 2.922e-05, It/sec 0.150, Tokens/sec 96.561, Trained Tokens 97532, Peak mem 14.729 GB
Iter 160: Train loss 1.443, Learning Rate 2.915e-05, It/sec 0.125, Tokens/sec 95.804, Trained Tokens 101368, Peak mem 14.729 GB
Iter 165: Train loss 1.593, Learning Rate 2.907e-05, It/sec 0.149, Tokens/sec 96.789, Trained Tokens 104608, Peak mem 14.729 GB
Iter 170: Train loss 1.575, Learning Rate 2.898e-05, It/sec 0.147, Tokens/sec 94.612, Trained Tokens 107831, Peak mem 14.729 GB
Iter 175: Train loss 1.734, Learning Rate 2.890e-05, It/sec 0.173, Tokens/sec 94.938, Trained Tokens 110579, Peak mem 14.729 GB
Iter 180: Train loss 1.562, Learning Rate 2.881e-05, It/sec 0.150, Tokens/sec 95.506, Trained Tokens 113754, Peak mem 14.729 GB
Iter 185: Train loss 1.561, Learning Rate 2.871e-05, It/sec 0.179, Tokens/sec 97.174, Trained Tokens 116467, Peak mem 14.729 GB
Iter 190: Train loss 1.595, Learning Rate 2.862e-05, It/sec 0.159, Tokens/sec 95.771, Trained Tokens 119483, Peak mem 14.729 GB
Iter 195: Train loss 1.602, Learning Rate 2.852e-05, It/sec 0.155, Tokens/sec 95.615, Trained Tokens 122571, Peak mem 14.729 GB
Iter 200: Val loss 1.420, Val took 3.997s
Iter 200: Train loss 1.687, Learning Rate 2.841e-05, It/sec 0.945, Tokens/sec 439.152, Trained Tokens 124895, Peak mem 14.729 GB
Iter 200: Saved adapter weights to adapters/adapters.safetensors and adapters/0000200_adapters.safetensors.
Iter 205: Train loss 1.636, Learning Rate 2.831e-05, It/sec 0.145, Tokens/sec 93.273, Trained Tokens 128112, Peak mem 14.729 GB
Iter 210: Train loss 1.679, Learning Rate 2.820e-05, It/sec 0.178, Tokens/sec 94.294, Trained Tokens 130755, Peak mem 14.729 GB
Iter 215: Train loss 1.703, Learning Rate 2.808e-05, It/sec 0.201, Tokens/sec 94.923, Trained Tokens 133111, Peak mem 14.729 GB
Iter 220: Train loss 1.593, Learning Rate 2.797e-05, It/sec 0.198, Tokens/sec 94.405, Trained Tokens 135492, Peak mem 14.729 GB
Iter 225: Train loss 1.592, Learning Rate 2.785e-05, It/sec 0.149, Tokens/sec 88.982, Trained Tokens 138483, Peak mem 14.729 GB
Iter 230: Train loss 1.485, Learning Rate 2.772e-05, It/sec 0.114, Tokens/sec 89.521, Trained Tokens 142419, Peak mem 17.518 GB
Iter 235: Train loss 1.600, Learning Rate 2.760e-05, It/sec 0.168, Tokens/sec 95.527, Trained Tokens 145265, Peak mem 17.518 GB
Iter 240: Train loss 1.664, Learning Rate 2.747e-05, It/sec 0.199, Tokens/sec 95.905, Trained Tokens 147672, Peak mem 17.518 GB
Iter 245: Train loss 1.650, Learning Rate 2.734e-05, It/sec 0.139, Tokens/sec 92.882, Trained Tokens 151005, Peak mem 17.518 GB
Iter 250: Train loss 1.705, Learning Rate 2.720e-05, It/sec 0.181, Tokens/sec 95.493, Trained Tokens 153638, Peak mem 17.518 GB
Iter 255: Train loss 1.590, Learning Rate 2.706e-05, It/sec 0.143, Tokens/sec 93.775, Trained Tokens 156926, Peak mem 17.518 GB
Iter 260: Train loss 1.561, Learning Rate 2.692e-05, It/sec 0.125, Tokens/sec 89.708, Trained Tokens 160510, Peak mem 19.409 GB
Iter 265: Train loss 1.501, Learning Rate 2.678e-05, It/sec 0.129, Tokens/sec 95.030, Trained Tokens 164205, Peak mem 19.409 GB
Iter 270: Train loss 1.525, Learning Rate 2.663e-05, It/sec 0.159, Tokens/sec 97.161, Trained Tokens 167267, Peak mem 19.409 GB
Iter 275: Train loss 1.733, Learning Rate 2.648e-05, It/sec 0.238, Tokens/sec 96.977, Trained Tokens 169307, Peak mem 19.409 GB
Iter 280: Train loss 1.503, Learning Rate 2.633e-05, It/sec 0.128, Tokens/sec 93.758, Trained Tokens 172966, Peak mem 19.409 GB
Iter 285: Train loss 1.545, Learning Rate 2.617e-05, It/sec 0.247, Tokens/sec 95.755, Trained Tokens 174901, Peak mem 19.409 GB
Iter 290: Train loss 1.562, Learning Rate 2.601e-05, It/sec 0.129, Tokens/sec 96.307, Trained Tokens 178648, Peak mem 19.409 GB
Iter 295: Train loss 1.504, Learning Rate 2.585e-05, It/sec 0.146, Tokens/sec 94.888, Trained Tokens 181900, Peak mem 19.409 GB
Iter 300: Train loss 1.556, Learning Rate 2.569e-05, It/sec 0.117, Tokens/sec 94.450, Trained Tokens 185924, Peak mem 19.409 GB
Iter 300: Saved adapter weights to adapters/adapters.safetensors and adapters/0000300_adapters.safetensors.
Iter 305: Train loss 1.679, Learning Rate 2.552e-05, It/sec 0.187, Tokens/sec 96.315, Trained Tokens 188495, Peak mem 19.409 GB
Iter 310: Train loss 1.750, Learning Rate 2.535e-05, It/sec 0.237, Tokens/sec 96.388, Trained Tokens 190525, Peak mem 19.409 GB
Iter 315: Train loss 1.632, Learning Rate 2.518e-05, It/sec 0.153, Tokens/sec 94.678, Trained Tokens 193620, Peak mem 19.409 GB
Iter 320: Train loss 1.723, Learning Rate 2.501e-05, It/sec 0.201, Tokens/sec 95.904, Trained Tokens 196005, Peak mem 19.409 GB
Iter 325: Train loss 1.562, Learning Rate 2.483e-05, It/sec 0.176, Tokens/sec 94.201, Trained Tokens 198682, Peak mem 19.409 GB
Iter 330: Train loss 1.739, Learning Rate 2.465e-05, It/sec 0.188, Tokens/sec 95.992, Trained Tokens 201235, Peak mem 19.409 GB
Iter 335: Train loss 1.521, Learning Rate 2.447e-05, It/sec 0.140, Tokens/sec 95.354, Trained Tokens 204643, Peak mem 19.409 GB
Iter 340: Train loss 1.592, Learning Rate 2.429e-05, It/sec 0.126, Tokens/sec 94.949, Trained Tokens 208407, Peak mem 19.409 GB
Iter 345: Train loss 1.643, Learning Rate 2.410e-05, It/sec 0.218, Tokens/sec 97.252, Trained Tokens 210637, Peak mem 19.409 GB
Iter 350: Train loss 1.603, Learning Rate 2.391e-05, It/sec 0.165, Tokens/sec 95.979, Trained Tokens 213549, Peak mem 19.409 GB
Iter 355: Train loss 1.541, Learning Rate 2.372e-05, It/sec 0.180, Tokens/sec 93.085, Trained Tokens 216137, Peak mem 19.409 GB
Iter 360: Train loss 1.554, Learning Rate 2.353e-05, It/sec 0.164, Tokens/sec 93.667, Trained Tokens 218991, Peak mem 19.409 GB
Iter 365: Train loss 1.615, Learning Rate 2.334e-05, It/sec 0.139, Tokens/sec 93.843, Trained Tokens 222363, Peak mem 19.409 GB
Iter 370: Train loss 1.655, Learning Rate 2.314e-05, It/sec 0.133, Tokens/sec 91.408, Trained Tokens 225792, Peak mem 19.409 GB
Iter 375: Train loss 1.738, Learning Rate 2.294e-05, It/sec 0.232, Tokens/sec 97.037, Trained Tokens 227884, Peak mem 19.409 GB
Iter 380: Train loss 1.617, Learning Rate 2.274e-05, It/sec 0.162, Tokens/sec 93.658, Trained Tokens 230775, Peak mem 19.409 GB
Iter 385: Train loss 1.650, Learning Rate 2.254e-05, It/sec 0.174, Tokens/sec 94.103, Trained Tokens 233479, Peak mem 19.409 GB
Iter 390: Train loss 1.535, Learning Rate 2.233e-05, It/sec 0.130, Tokens/sec 94.952, Trained Tokens 237132, Peak mem 19.409 GB
Iter 395: Train loss 1.589, Learning Rate 2.213e-05, It/sec 0.153, Tokens/sec 95.416, Trained Tokens 240248, Peak mem 19.409 GB
Iter 400: Val loss 1.449, Val took 3.346s
Iter 400: Train loss 1.713, Learning Rate 2.192e-05, It/sec 0.756, Tokens/sec 436.836, Trained Tokens 243139, Peak mem 19.409 GB
Iter 400: Saved adapter weights to adapters/adapters.safetensors and adapters/0000400_adapters.safetensors.
Iter 405: Train loss 1.553, Learning Rate 2.171e-05, It/sec 0.140, Tokens/sec 94.944, Trained Tokens 246519, Peak mem 19.409 GB
Iter 410: Train loss 1.574, Learning Rate 2.150e-05, It/sec 0.161, Tokens/sec 94.041, Trained Tokens 249434, Peak mem 19.409 GB
Iter 415: Train loss 1.720, Learning Rate 2.129e-05, It/sec 0.179, Tokens/sec 95.309, Trained Tokens 252092, Peak mem 19.409 GB
Iter 420: Train loss 1.566, Learning Rate 2.107e-05, It/sec 0.144, Tokens/sec 94.054, Trained Tokens 255359, Peak mem 19.409 GB
Iter 425: Train loss 1.602, Learning Rate 2.086e-05, It/sec 0.177, Tokens/sec 95.213, Trained Tokens 258055, Peak mem 19.409 GB
Iter 430: Train loss 1.427, Learning Rate 2.064e-05, It/sec 0.130, Tokens/sec 94.972, Trained Tokens 261712, Peak mem 19.409 GB
Iter 435: Train loss 1.637, Learning Rate 2.042e-05, It/sec 0.160, Tokens/sec 95.002, Trained Tokens 264672, Peak mem 19.409 GB
Iter 440: Train loss 1.650, Learning Rate 2.020e-05, It/sec 0.176, Tokens/sec 95.570, Trained Tokens 267394, Peak mem 19.409 GB
Iter 445: Train loss 1.504, Learning Rate 1.998e-05, It/sec 0.157, Tokens/sec 94.528, Trained Tokens 270401, Peak mem 19.409 GB
Iter 450: Train loss 1.565, Learning Rate 1.976e-05, It/sec 0.166, Tokens/sec 96.060, Trained Tokens 273300, Peak mem 19.409 GB
Iter 455: Train loss 1.728, Learning Rate 1.954e-05, It/sec 0.218, Tokens/sec 96.532, Trained Tokens 275512, Peak mem 19.409 GB
Iter 460: Train loss 1.639, Learning Rate 1.931e-05, It/sec 0.179, Tokens/sec 93.604, Trained Tokens 278132, Peak mem 19.409 GB
Iter 465: Train loss 1.597, Learning Rate 1.909e-05, It/sec 0.163, Tokens/sec 95.533, Trained Tokens 281056, Peak mem 19.409 GB
Iter 470: Train loss 1.522, Learning Rate 1.886e-05, It/sec 0.153, Tokens/sec 98.242, Trained Tokens 284271, Peak mem 19.409 GB
Iter 475: Train loss 1.497, Learning Rate 1.863e-05, It/sec 0.173, Tokens/sec 98.682, Trained Tokens 287116, Peak mem 19.409 GB
Iter 480: Train loss 1.492, Learning Rate 1.840e-05, It/sec 0.171, Tokens/sec 94.965, Trained Tokens 289887, Peak mem 19.409 GB
Iter 485: Train loss 1.516, Learning Rate 1.817e-05, It/sec 0.160, Tokens/sec 94.132, Trained Tokens 292837, Peak mem 19.409 GB
Iter 490: Train loss 1.615, Learning Rate 1.794e-05, It/sec 0.199, Tokens/sec 93.854, Trained Tokens 295192, Peak mem 19.409 GB
Iter 495: Train loss 1.520, Learning Rate 1.771e-05, It/sec 0.127, Tokens/sec 93.321, Trained Tokens 298877, Peak mem 19.409 GB
Iter 500: Train loss 1.624, Learning Rate 1.748e-05, It/sec 0.158, Tokens/sec 90.712, Trained Tokens 301754, Peak mem 19.409 GB
Iter 500: Saved adapter weights to adapters/adapters.safetensors and adapters/0000500_adapters.safetensors.
Iter 505: Train loss 1.554, Learning Rate 1.725e-05, It/sec 0.181, Tokens/sec 95.226, Trained Tokens 304379, Peak mem 19.409 GB
Iter 510: Train loss 1.873, Learning Rate 1.702e-05, It/sec 0.282, Tokens/sec 92.496, Trained Tokens 306019, Peak mem 19.409 GB
Iter 515: Train loss 1.670, Learning Rate 1.678e-05, It/sec 0.178, Tokens/sec 94.885, Trained Tokens 308686, Peak mem 19.409 GB
Iter 520: Train loss 1.750, Learning Rate 1.655e-05, It/sec 0.177, Tokens/sec 94.764, Trained Tokens 311358, Peak mem 19.409 GB
Iter 525: Train loss 1.571, Learning Rate 1.632e-05, It/sec 0.183, Tokens/sec 95.119, Trained Tokens 313958, Peak mem 19.409 GB
Iter 530: Train loss 1.442, Learning Rate 1.608e-05, It/sec 0.127, Tokens/sec 93.275, Trained Tokens 317621, Peak mem 19.409 GB
Iter 535: Train loss 1.624, Learning Rate 1.585e-05, It/sec 0.164, Tokens/sec 94.661, Trained Tokens 320504, Peak mem 19.409 GB
Iter 540: Train loss 1.778, Learning Rate 1.561e-05, It/sec 0.194, Tokens/sec 94.572, Trained Tokens 322937, Peak mem 19.409 GB
Iter 545: Train loss 1.542, Learning Rate 1.538e-05, It/sec 0.138, Tokens/sec 93.897, Trained Tokens 326348, Peak mem 19.409 GB
Iter 550: Train loss 1.513, Learning Rate 1.514e-05, It/sec 0.156, Tokens/sec 95.806, Trained Tokens 329422, Peak mem 19.409 GB
Iter 555: Train loss 1.542, Learning Rate 1.491e-05, It/sec 0.151, Tokens/sec 94.013, Trained Tokens 332534, Peak mem 19.409 GB
Iter 560: Train loss 1.576, Learning Rate 1.467e-05, It/sec 0.192, Tokens/sec 95.091, Trained Tokens 335015, Peak mem 19.409 GB
Iter 565: Train loss 1.649, Learning Rate 1.444e-05, It/sec 0.196, Tokens/sec 93.023, Trained Tokens 337383, Peak mem 19.409 GB
Iter 570: Train loss 1.542, Learning Rate 1.421e-05, It/sec 0.137, Tokens/sec 93.244, Trained Tokens 340785, Peak mem 19.409 GB
Iter 575: Train loss 1.580, Learning Rate 1.397e-05, It/sec 0.166, Tokens/sec 94.918, Trained Tokens 343651, Peak mem 19.409 GB
Iter 580: Train loss 1.617, Learning Rate 1.374e-05, It/sec 0.159, Tokens/sec 95.595, Trained Tokens 346648, Peak mem 19.409 GB
Iter 585: Train loss 1.630, Learning Rate 1.350e-05, It/sec 0.158, Tokens/sec 95.399, Trained Tokens 349675, Peak mem 19.409 GB
Iter 590: Train loss 1.466, Learning Rate 1.327e-05, It/sec 0.124, Tokens/sec 93.409, Trained Tokens 353452, Peak mem 19.409 GB
Iter 595: Train loss 1.601, Learning Rate 1.304e-05, It/sec 0.165, Tokens/sec 95.796, Trained Tokens 356349, Peak mem 19.409 GB
Iter 600: Val loss 1.300, Val took 5.694s
Iter 600: Train loss 1.501, Learning Rate 1.280e-05, It/sec 0.794, Tokens/sec 547.417, Trained Tokens 359795, Peak mem 19.409 GB
Iter 600: Saved adapter weights to adapters/adapters.safetensors and adapters/0000600_adapters.safetensors.
Iter 605: Train loss 1.546, Learning Rate 1.257e-05, It/sec 0.145, Tokens/sec 93.975, Trained Tokens 363031, Peak mem 19.409 GB
Iter 610: Train loss 1.560, Learning Rate 1.234e-05, It/sec 0.141, Tokens/sec 93.563, Trained Tokens 366356, Peak mem 19.409 GB
Iter 615: Train loss 1.640, Learning Rate 1.211e-05, It/sec 0.184, Tokens/sec 93.823, Trained Tokens 368902, Peak mem 19.409 GB
Iter 620: Train loss 1.571, Learning Rate 1.188e-05, It/sec 0.140, Tokens/sec 94.883, Trained Tokens 372296, Peak mem 19.409 GB
Iter 625: Train loss 1.496, Learning Rate 1.165e-05, It/sec 0.128, Tokens/sec 93.654, Trained Tokens 375947, Peak mem 19.409 GB
Iter 630: Train loss 1.475, Learning Rate 1.142e-05, It/sec 0.179, Tokens/sec 95.299, Trained Tokens 378604, Peak mem 19.409 GB
Iter 635: Train loss 1.490, Learning Rate 1.120e-05, It/sec 0.148, Tokens/sec 93.163, Trained Tokens 381757, Peak mem 19.409 GB
Iter 640: Train loss 1.498, Learning Rate 1.097e-05, It/sec 0.127, Tokens/sec 93.899, Trained Tokens 385467, Peak mem 19.409 GB
Iter 645: Train loss 1.708, Learning Rate 1.074e-05, It/sec 0.154, Tokens/sec 95.691, Trained Tokens 388568, Peak mem 19.409 GB
Iter 650: Train loss 1.498, Learning Rate 1.052e-05, It/sec 0.189, Tokens/sec 107.797, Trained Tokens 391414, Peak mem 19.409 GB
Iter 655: Train loss 1.527, Learning Rate 1.030e-05, It/sec 0.178, Tokens/sec 106.256, Trained Tokens 394395, Peak mem 19.409 GB
Iter 660: Train loss 1.402, Learning Rate 1.007e-05, It/sec 0.169, Tokens/sec 104.640, Trained Tokens 397494, Peak mem 19.409 GB
Iter 665: Train loss 1.652, Learning Rate 9.854e-06, It/sec 0.192, Tokens/sec 104.114, Trained Tokens 400211, Peak mem 19.409 GB
Iter 670: Train loss 1.616, Learning Rate 9.634e-06, It/sec 0.138, Tokens/sec 103.355, Trained Tokens 403956, Peak mem 19.409 GB
Iter 675: Train loss 1.578, Learning Rate 9.416e-06, It/sec 0.138, Tokens/sec 103.449, Trained Tokens 407691, Peak mem 19.409 GB
Iter 680: Train loss 1.685, Learning Rate 9.199e-06, It/sec 0.199, Tokens/sec 104.949, Trained Tokens 410333, Peak mem 19.409 GB
Iter 685: Train loss 1.616, Learning Rate 8.984e-06, It/sec 0.188, Tokens/sec 104.678, Trained Tokens 413117, Peak mem 19.409 GB
Iter 690: Train loss 1.678, Learning Rate 8.770e-06, It/sec 0.176, Tokens/sec 102.929, Trained Tokens 416040, Peak mem 19.409 GB
Iter 695: Train loss 1.567, Learning Rate 8.557e-06, It/sec 0.196, Tokens/sec 103.434, Trained Tokens 418685, Peak mem 19.409 GB
Iter 700: Train loss 1.521, Learning Rate 8.347e-06, It/sec 0.152, Tokens/sec 103.262, Trained Tokens 422092, Peak mem 19.409 GB
Iter 700: Saved adapter weights to adapters/adapters.safetensors and adapters/0000700_adapters.safetensors.
Iter 705: Train loss 1.473, Learning Rate 8.138e-06, It/sec 0.163, Tokens/sec 102.984, Trained Tokens 425245, Peak mem 19.409 GB
Iter 710: Train loss 1.617, Learning Rate 7.930e-06, It/sec 0.175, Tokens/sec 105.097, Trained Tokens 428250, Peak mem 19.409 GB
Iter 715: Train loss 1.491, Learning Rate 7.725e-06, It/sec 0.228, Tokens/sec 103.919, Trained Tokens 430530, Peak mem 19.409 GB
Iter 720: Train loss 1.595, Learning Rate 7.521e-06, It/sec 0.189, Tokens/sec 105.565, Trained Tokens 433324, Peak mem 19.409 GB
Iter 725: Train loss 1.565, Learning Rate 7.319e-06, It/sec 0.192, Tokens/sec 104.310, Trained Tokens 436040, Peak mem 19.409 GB
Iter 730: Train loss 1.574, Learning Rate 7.119e-06, It/sec 0.149, Tokens/sec 104.619, Trained Tokens 439541, Peak mem 19.409 GB
Iter 735: Train loss 1.521, Learning Rate 6.921e-06, It/sec 0.153, Tokens/sec 106.293, Trained Tokens 443020, Peak mem 19.409 GB
Iter 740: Train loss 1.538, Learning Rate 6.725e-06, It/sec 0.192, Tokens/sec 106.159, Trained Tokens 445779, Peak mem 19.409 GB
Iter 745: Train loss 1.436, Learning Rate 6.531e-06, It/sec 0.120, Tokens/sec 103.839, Trained Tokens 450121, Peak mem 19.409 GB
Iter 750: Train loss 1.545, Learning Rate 6.339e-06, It/sec 0.153, Tokens/sec 105.282, Trained Tokens 453563, Peak mem 19.409 GB
Iter 755: Train loss 1.572, Learning Rate 6.149e-06, It/sec 0.246, Tokens/sec 104.547, Trained Tokens 455689, Peak mem 19.409 GB
Iter 760: Train loss 1.577, Learning Rate 5.961e-06, It/sec 0.251, Tokens/sec 107.390, Trained Tokens 457825, Peak mem 19.409 GB
Iter 765: Train loss 1.485, Learning Rate 5.776e-06, It/sec 0.169, Tokens/sec 105.222, Trained Tokens 460935, Peak mem 19.409 GB
Iter 770: Train loss 1.637, Learning Rate 5.593e-06, It/sec 0.164, Tokens/sec 104.885, Trained Tokens 464126, Peak mem 19.409 GB
Iter 775: Train loss 1.515, Learning Rate 5.412e-06, It/sec 0.159, Tokens/sec 104.428, Trained Tokens 467414, Peak mem 19.409 GB
Iter 780: Train loss 1.644, Learning Rate 5.234e-06, It/sec 0.184, Tokens/sec 104.815, Trained Tokens 470266, Peak mem 19.409 GB
Iter 785: Train loss 1.723, Learning Rate 5.058e-06, It/sec 0.275, Tokens/sec 105.261, Trained Tokens 472183, Peak mem 19.409 GB
Iter 790: Train loss 1.607, Learning Rate 4.885e-06, It/sec 0.178, Tokens/sec 105.394, Trained Tokens 475150, Peak mem 19.409 GB
Iter 795: Train loss 1.381, Learning Rate 4.714e-06, It/sec 0.157, Tokens/sec 104.975, Trained Tokens 478494, Peak mem 19.409 GB
Iter 800: Val loss 1.429, Val took 6.000s
Iter 800: Train loss 1.482, Learning Rate 4.545e-06, It/sec 4.600, Tokens/sec 2204.487, Trained Tokens 480890, Peak mem 19.409 GB
Iter 800: Saved adapter weights to adapters/adapters.safetensors and adapters/0000800_adapters.safetensors.
Iter 805: Train loss 1.627, Learning Rate 4.380e-06, It/sec 0.230, Tokens/sec 106.581, Trained Tokens 483211, Peak mem 19.409 GB
Iter 810: Train loss 1.568, Learning Rate 4.216e-06, It/sec 0.175, Tokens/sec 106.507, Trained Tokens 486259, Peak mem 19.409 GB
Iter 815: Train loss 1.567, Learning Rate 4.056e-06, It/sec 0.170, Tokens/sec 104.837, Trained Tokens 489342, Peak mem 19.409 GB
Iter 820: Train loss 1.518, Learning Rate 3.898e-06, It/sec 0.129, Tokens/sec 103.856, Trained Tokens 493379, Peak mem 19.409 GB
Iter 825: Train loss 1.550, Learning Rate 3.743e-06, It/sec 0.246, Tokens/sec 106.081, Trained Tokens 495531, Peak mem 19.409 GB
Iter 830: Train loss 1.799, Learning Rate 3.591e-06, It/sec 0.339, Tokens/sec 103.669, Trained Tokens 497061, Peak mem 19.409 GB
Iter 835: Train loss 1.580, Learning Rate 3.442e-06, It/sec 0.183, Tokens/sec 104.315, Trained Tokens 499913, Peak mem 19.409 GB
Iter 840: Train loss 1.488, Learning Rate 3.295e-06, It/sec 0.185, Tokens/sec 105.085, Trained Tokens 502749, Peak mem 19.409 GB
Iter 845: Train loss 1.562, Learning Rate 3.151e-06, It/sec 0.204, Tokens/sec 106.284, Trained Tokens 505358, Peak mem 19.409 GB
Iter 850: Train loss 1.606, Learning Rate 3.011e-06, It/sec 0.199, Tokens/sec 105.009, Trained Tokens 507991, Peak mem 19.409 GB
Iter 855: Train loss 1.494, Learning Rate 2.873e-06, It/sec 0.198, Tokens/sec 106.569, Trained Tokens 510681, Peak mem 19.409 GB
Iter 860: Train loss 1.475, Learning Rate 2.738e-06, It/sec 0.170, Tokens/sec 105.755, Trained Tokens 513785, Peak mem 19.409 GB
Iter 865: Train loss 1.527, Learning Rate 2.606e-06, It/sec 0.203, Tokens/sec 104.990, Trained Tokens 516377, Peak mem 19.409 GB
Iter 870: Train loss 1.754, Learning Rate 2.478e-06, It/sec 0.148, Tokens/sec 103.745, Trained Tokens 519884, Peak mem 19.409 GB
Iter 875: Train loss 1.596, Learning Rate 2.352e-06, It/sec 0.154, Tokens/sec 105.054, Trained Tokens 523304, Peak mem 19.409 GB
Iter 880: Train loss 1.712, Learning Rate 2.230e-06, It/sec 0.191, Tokens/sec 105.442, Trained Tokens 526064, Peak mem 19.409 GB
Iter 885: Train loss 1.601, Learning Rate 2.111e-06, It/sec 0.167, Tokens/sec 103.711, Trained Tokens 529164, Peak mem 19.409 GB
Iter 890: Train loss 1.561, Learning Rate 1.995e-06, It/sec 0.205, Tokens/sec 105.706, Trained Tokens 531738, Peak mem 19.409 GB
Iter 895: Train loss 1.494, Learning Rate 1.882e-06, It/sec 0.217, Tokens/sec 105.305, Trained Tokens 534160, Peak mem 19.409 GB
Iter 900: Train loss 1.637, Learning Rate 1.772e-06, It/sec 0.195, Tokens/sec 104.027, Trained Tokens 536829, Peak mem 19.409 GB
Iter 900: Saved adapter weights to adapters/adapters.safetensors and adapters/0000900_adapters.safetensors.
Iter 905: Train loss 1.452, Learning Rate 1.666e-06, It/sec 0.153, Tokens/sec 103.404, Trained Tokens 540206, Peak mem 19.409 GB
Iter 910: Train loss 1.575, Learning Rate 1.563e-06, It/sec 0.220, Tokens/sec 106.515, Trained Tokens 542623, Peak mem 19.409 GB
Iter 915: Train loss 1.551, Learning Rate 1.463e-06, It/sec 0.173, Tokens/sec 105.034, Trained Tokens 545662, Peak mem 19.409 GB
Iter 920: Train loss 1.591, Learning Rate 1.367e-06, It/sec 0.189, Tokens/sec 104.461, Trained Tokens 548421, Peak mem 19.409 GB
Iter 925: Train loss 1.654, Learning Rate 1.274e-06, It/sec 0.169, Tokens/sec 105.159, Trained Tokens 551528, Peak mem 19.409 GB
Iter 930: Train loss 1.405, Learning Rate 1.185e-06, It/sec 0.171, Tokens/sec 105.275, Trained Tokens 554606, Peak mem 19.409 GB
Iter 935: Train loss 1.526, Learning Rate 1.099e-06, It/sec 0.167, Tokens/sec 105.054, Trained Tokens 557748, Peak mem 19.409 GB
Iter 940: Train loss 1.417, Learning Rate 1.016e-06, It/sec 0.145, Tokens/sec 95.212, Trained Tokens 561036, Peak mem 19.409 GB
Iter 945: Train loss 1.466, Learning Rate 9.367e-07, It/sec 0.157, Tokens/sec 96.806, Trained Tokens 564121, Peak mem 19.409 GB
Iter 950: Train loss 1.539, Learning Rate 8.610e-07, It/sec 0.139, Tokens/sec 95.188, Trained Tokens 567547, Peak mem 19.409 GB
Iter 955: Train loss 1.578, Learning Rate 7.888e-07, It/sec 0.154, Tokens/sec 97.753, Trained Tokens 570724, Peak mem 19.409 GB
Iter 960: Train loss 1.477, Learning Rate 7.201e-07, It/sec 0.156, Tokens/sec 96.405, Trained Tokens 573814, Peak mem 19.409 GB
Iter 965: Train loss 1.577, Learning Rate 6.549e-07, It/sec 0.161, Tokens/sec 96.825, Trained Tokens 576818, Peak mem 19.409 GB
Iter 970: Train loss 1.566, Learning Rate 5.933e-07, It/sec 0.167, Tokens/sec 97.113, Trained Tokens 579720, Peak mem 19.409 GB
Iter 975: Train loss 1.464, Learning Rate 5.353e-07, It/sec 0.175, Tokens/sec 96.903, Trained Tokens 582484, Peak mem 19.409 GB
Iter 980: Train loss 1.665, Learning Rate 4.808e-07, It/sec 0.152, Tokens/sec 97.262, Trained Tokens 585674, Peak mem 19.409 GB
Iter 985: Train loss 1.552, Learning Rate 4.300e-07, It/sec 0.207, Tokens/sec 97.032, Trained Tokens 588019, Peak mem 19.409 GB
Iter 990: Train loss 1.461, Learning Rate 3.827e-07, It/sec 0.161, Tokens/sec 97.454, Trained Tokens 591039, Peak mem 19.409 GB
Iter 995: Train loss 1.531, Learning Rate 3.391e-07, It/sec 0.183, Tokens/sec 98.384, Trained Tokens 593723, Peak mem 19.409 GB
Iter 1000: Val loss 1.440, Val took 5.109s
Iter 1000: Train loss 1.504, Learning Rate 2.990e-07, It/sec 0.823, Tokens/sec 447.697, Trained Tokens 596444, Peak mem 19.409 GB
Iter 1000: Saved adapter weights to adapters/adapters.safetensors and adapters/0001000_adapters.safetensors.
Saved final weights to adapters/adapters.safetensors.
できたできた!
でもここにたどり着くまで、ずいぶんとGitHubを眺めたのよ。うんうん
argparseの書き方も忘れてて復習したのよ。意外と、俺、頑張り屋(褒めて褒めて)
しっかり学習するなら、パラメの設定やデータの準備をしっかりやしましょうね。
6. 学習結果
じゃ、結果を見ていきましょう。
ベースとしたモデルはllm-jp/llm-jp-3-3.7bです。これは事前学習しかされていないので、質問形式で入力してもまともに返答がかえってきません。本来は言葉をいれたらその続きの言葉を出力するモデルなのです。
6-1. 学習「前」の出力確認
まずは学習前(素のllm-jp/llm-jp-3-3.7bの4bit量子化したもの)
response = generate(
model,
tokenizer,
prompt='# 指示\n大規模言語モデルって何?\n# 回答\n',
verbose=True
)
# ==========
#
# # 大規模言語モデルって何?
#
# 大規模言語モデルとは、大量のデータを学習させることで言語の理解を可能にするモデルです。
#
# # 大規模言語モデルって何?
#
# 大規模言語モデルとは、大量のデータを学習させることで言語の理解を可能にするモデルです。
#
# # 大規模言語モデルって何?
#
# < 中略 >
#
# 大規模言語モデルとは、大量の
# ==========
# Prompt: 14 tokens, 113.487 tokens-per-sec
# Generation: 256 tokens, 40.249 tokens-per-sec
# Peak memory: 2.330 GB
本来であれば「大規模言語モデルとは、」
と入力すると、この言葉の続きを出力するモデルです。今回は学習の効果がわかりやすくなるように、敢えてインストラクションチューニングモデルに入力するようにプロンプトを入れています。
要は 比較のために学習後と同じ言葉を入力 しているってこと。
そのため、出力がおかしくなり、同じ言葉の繰り返しが出力されています。
もう一つ試してみましょう。
response = generate(
model,
tokenizer,
prompt='# 指示\n石破茂氏って何をしている人ですか\n# 回答\n',
verbose=True
)
# ==========
#
# 石破茂氏って何をしている人ですか?
# # 回答
#
# # 回答
#
# # 回答
#
#
# < 中略 >
#
#
# # 回答
#
# # 回答
#
#
# ==========
# Prompt: 17 tokens, 137.744 tokens-per-sec
# Generation: 256 tokens, 39.532 tokens-per-sec
# Peak memory: 2.330 GB
こちらも同様の結果になっています。
6-2. 学習「後」の出力確認
では学習したモデルを使って試してみましょう。
まず、モデルの読み込み。
from mlx_lm import generate
from mlx_lm.utils import load
mlx_path = "llm-jp-3-3.7b/" # Q4モデルの保存フォルダのパス
model, tokenizer = load(
mlx_path,
adapter_path="./adapters", # LoRAモデルの保存フォルダのパス
)
モデルのロードができたら早速推論です。
response = generate(
model,
tokenizer,
prompt='# 指示\n大規模言語モデルって何?\n# 回答\n',
verbose=True
)
# ==========
# 大規模言語モデル(LLM)は、大量のテキストデータを学習して生成するモデルです。LLMは自然言語処理(NLP)の分野で広く使用されており、テキストの生成や翻訳、対話システムの構築などに利用されています。
#
# LLMは主に以下の3つの要素から構成されています。
#
# 1. **学習データ**: 大量のテキストデータ(コーパス)を使用してモデルを学習します。
#
# 2. **モデル**: 学習されたモデルは大量のデータから特徴を抽出し、それらを組み合わせて新しいテキストを生成します。
#
# 3. **生成器**: モデルから生成されたテキストを出力します。
#
# LLMは非常に強力で、人間の言語理解能力に近いレベルの生成能力を持ちます。ただし、その生成結果は必ずしも正確ではなく、文脈や文脈に依存した表現を生成する能力は限定的です。
#
# LLMは現在、自然言語処理の分野で非常に重要な役割を果たしており、今後も様々な分野で利用が拡大すると予想されています。
# ==========
# Prompt: 14 tokens, 78.951 tokens-per-sec
# Generation: 209 tokens, 35.392 tokens-per-sec
# Peak memory: 2.241 GB
ちゃんと質問に回答する形式に変化しているでしょ?
すんばらしい。ベースとなったモデルがいいんだね!
学習データは以下の構造になっています。
# 指示
< ここに質問文が入る(例:名古屋の大須について教えてください) >
# 回答
< ここに回答文が入る(例:名古屋の大須ですね!大須は名古屋の中心部にあり・・・略) >
この構造で出力されるので、質問に対する回答ができるんですね。
リーズニングモデルなどは回答の前にリーズニングセクションが入ります。(他の方法は知らん)
response = generate(
model,
tokenizer,
prompt='# 指示\n石破茂氏って何をしている人ですか\n# 回答\n',
verbose=True
)
# ==========
# 石破茂氏は日本の政治家で、現在は自由民主党の衆議院議員として活動しています。彼は主に、安全保障政策や経済政策、地方創生などの分野で活躍しています。また、彼は過去に防衛大臣や農林水産大臣を務めた経験があります。
# ==========
# Prompt: 17 tokens, 168.393 tokens-per-sec
# Generation: 53 tokens, 38.212 tokens-per-sec
# Peak memory: 2.242 GB
はい。いい感じですね。
学習データを2000個使ってます。
あ、情報が古いのは学習データが古いからなんです。
7. おわりに
これで、mlx_lmを使ってLLMを学習することができるようになりました。
いきなり13Bのモデルだとメモリーのスワップがすごかったので、今回は3.7Bのモデルに変更しました。きっと性能はそこそこなんだと思いますが、llm-jp-3-3.7b
は、ほんとに素晴らしいベースモデルなので、綺麗に出力することができました。
十分な量の学習をしたわけではありませんが、今回は学習する方法を明確にすることが目標ですので、今回はこれで良しとします。
学習させていてやはりメモリーが一杯一杯になります。
unslothのGradient Accumulationの機能が欲しいなぁ。
mlx_lmでは、まだやりたいことがあります。それは途中のcheckpoint(一時保存)からの学習の継続や、モデルのマージなどです。
またやり方がわかったらQiitaに投稿したいと思います。
ほんじゃまた