17
14

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

KFold + OputnaでLightgbmをチューニングする

Last updated at Posted at 2021-06-06

#初めに

Optunaでlightgbmをチューニングして回帰分析をしてみたので、その忘備録です。

使用したデータは、こちらのコンペ↓で使用されるデータです。
House Prices - Advanced Regression Techniques

こちらのコンペは住宅の売値を予測するコンペとなっています。
住宅の値段なので、築年数や広さが重要だと思いますが、初手は可能な限り特徴量を使う方向で行きます。

モデルの精度については、RMSE約0.124がベストスコアとなっており、kaggleにsubmitして算出された値になります。
この記事執筆時点では、大体上位17%あたりの順位でした。
コンペの評価基準にはRMSEが使用されています。

#準備

#今回使ったライブラリ
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

from sklearn.model_selection import KFold, cross_validate
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error as mse
import optuna
from optuna.visualization import plot_optimization_history, plot_param_importances
import lightgbm as lgb

次にデータの読み込みと欠損値のチェック。

train_data = pd.read_csv("house-prices-advanced-regression-techniques/train.csv")
train = train_data.copy()
train.index = train["Id"]
del train['Id']
test_data = pd.read_csv("house-prices-advanced-regression-techniques/test.csv")
test = test_data.copy()
test_id = test['Id']
test.index = test["Id"]
del test['Id']

#欠損値をカウントしたDataFrameの作成
missing_train = pd.DataFrame(train.isnull().sum())
missing_train = missing_train.rename(columns={0:'missing_value_counts'})
missing_test = pd.DataFrame(test.isnull().sum())
missing_test = missing_test.rename(columns={0:'missing_value_counts'})

fig = plt.figure(figsize=(20,20))
plt.barh(missing_train.index, missing_train.missing_value_counts, color='blue')
plt.barh(missing_test.index, missing_test.missing_value_counts, color='green')
plt.legend(['Train', 'Test'], fontsize=15)

image.png
学習用とテストデータの欠損値を重ねてプロットすることで、欠損値の傾向を確認します。
青くなっている部分が両方のデータの差を表しています。
欠損値の分布には大きな差がないようです。

#欠損値の多いカラムは削除
drop_col = ['MiscFeature', 'Fence', 'PoolQC', 'FireplaceQu', 'LotShape', 'LotFrontage', 'Alley']
train = train.drop(drop_col, axis=1)
test = test.drop(drop_col, axis=1)

学習用、テスト用それぞれのデータで同じ特徴量が多数の欠損値を持っているので削除します。
データ数が少ないので、多少の欠損値は許容範囲とします。

#ざっくりEDA

#相関係数のヒートマップ
corr_tr = train.corr()
corr_tr = pd.DataFrame(corr_tr)
sns.heatmap(corr_tr);

image.png
数値データだけですが、ヒートマップで相関係数を確認できます。

#特徴量同士の相関係数を確認※一部抜粋
corr_tr.iloc[:12, :12].style.background_gradient(cmap='coolwarm')

↑のコードでも特徴量同士の相関係数を確認できます。
特徴量同士で相関が大きい箇所もありますが、ここもデータをすべて使う方向で行きます。

high_corr = corr_tr[corr_tr['SalePrice'] > 0.6]['SalePrice']
high_corr
[out]
#材料と仕上げの質
OverallQual    0.790982
#家の広さを表すデータ
TotalBsmtSF    0.613581
1stFlrSF       0.605852
GrLivArea      0.708624
#ガレージの広さ
GarageCars     0.640409
GarageArea     0.623431
#家の値段、目的変数
SalePrice      1.000000
Name: SalePrice, dtype: float64

目的変数と高い相関を持つ特徴量を確認します。
家の値段を左右すると思われる築年数がなかったので、この時点で相関係数をあてにするのは微妙かもと思いました。
家の広さを表す特徴量ですが、フロアの違いはあるものの、根本的には家の広さを表しています。
ガレージのデータですが、収容できる車の台数と広さを表しています。これはほぼ同義だと思います。

#目的変数と特徴量に分ける
SalePrice = train["SalePrice"]
train = train.drop("SalePrice", axis=1)

#定性データの定量データのカラムリストを作る
cat_col = [col for col in train.select_dtypes(include=object)]
num_col = [col for col in train.select_dtypes(exclude=object)]

この後の処理を考え、数的データと質的データごとにリストを作りました。

定量データの特徴量を可視化して見てみます。

i = 1
plt.figure()
fig, ax = plt.subplots(9, 4, figsize=(20,15))

for feature in num_col:
    plt.subplot(9,4,i)
    sns.histplot(train[feature], color='blue', kde=True, bins=100, 
                label='train')
    sns.histplot(test[feature], color='green', kde=True, bins=100, 
                label='test')
    plt.title(feature, fontsize=8)
    plt.xlabel(' ')
    plt.legend()
    i += 1
plt.tight_layout()
plt.show();

image.png
ざっくりとですが、学習用とテスト用データともに大まかな分布の傾向は似ているようです。

image.png
同じ要領で、定性データの可視化も行います。
こっちは両方のデータで違う傾向を表す特徴量もあるようです。

目的変数SalePrice(住宅の売値)も可視化します。
sns.histplot(SalePrice, kde=True)
image.png
目的変数は右の裾が長い分布のため、外れ値の影響で平均が中央値より大きくなる分布です。
まずは外れ値を除去しない方向で進めます。

#lgihtgbm用にデータ処理

all_data = pd.concat([train, test], axis=0)

all_data[num_col] = all_data[num_col].astype('float')
all_data[cat_col] = all_data[cat_col].astype('category')

train_size = len(train)
train = all_data[:train_size]
test = all_data[train_size:]

print("train size:", train.shape)
print("test size:", test.shape)
#train size: (1460, 72)
#test size: (1459, 72)

lightgbmに適したデータ型に変更する処理をしています。
int型もfloat型にしたほうが、精度良くなりました。
後でLabeEncoderを使いやすいようにconcatしていますが、まずはデータ型の変換のみでモデルに学習させます。

#チューニングとモデル構築

ここから本題のチューニングです。

#チューニング用のモデルを作成
def objective(trial):
    params = {
        'objective':'regression',
        'metric':'r2',
        'verbosity':-1,
        'num_leaves':trial.suggest_int('num_leaves', 10, 1000),
        'max_depth':trial.suggest_int('max_depth', 8, 24),
        'learning_rate':trial.suggest_loguniform('learning_rate', 1e-8, 1.0),
        'reg_alpha':trial.suggest_loguniform('reg_alpha', 1e-5, 1.0),
        'reg_lambda':trial.suggest_loguniform('reg_lambda', 1e-5, 1.0),
        'feature_fraction':trial.suggest_uniform('feature_fraction', 0.3, 1.0),
        'bagging_fraction':trial.suggest_uniform('bagging_fraction', 0.3, 1.0),
        'bagging_freq':trial.suggest_int('bagging_freq', 1, 8),
        'min_child_samples':trial.suggest_int('min_child_samples', 5, 80),
        'random_state':8
        }
#見込みのないtrialの切り捨て
    pruning_callback = optuna.integration.LightGBMPruningCallback(trial, 'r2')
#モデルにチューニングしたパラメータを渡す
    model = lgb.LGBMRegressor(**params, n_estimators=500)
#KFold分割し、評価を行う
    kf = KFold(n_splits=4, shuffle=True, random_state=8)
    scores = cross_validate(model, X=train, y=SalePrice, scoring='r2', cv=kf)
    return scores['test_score'].mean()

Optunaに渡すためのモデルを定義しています。
ただデータ数が少ないため、元のデータをいきなりKFold分割してます。
ほんとは学習用、検証用、テスト用に分割してモデルの精度を確認したかったのですが、データ量が少ないので断念。
分かりやすくするため、あえて'regression'を明記してますが、デフォルトではこれになってます。
コンペの評価指標はRMSEですが、cross_validateで使えないので、一目で分かりやすい決定係数にしています。

モデルを作成したので、チューニングさせます。

#Optunaによるチューニング
%%time
study = optuna.create_study(direction='maximize')
study.optimize(objective, timeout=600)
#ベストなパラメーターの表示
best_params = study.best_params
print('best_params:')
[out]
best_params:
{'num_leaves': 488, 'max_depth': 12, 
'learning_rate': 0.09946325984953863, 'reg_alpha': 0.002492041819920163,
 'reg_lambda': 0.0016166727035490307, 'feature_fraction': 0.300655728931028, 
'bagging_fraction': 0.9867819626446563, 'bagging_freq': 4, 'min_child_samples': 11}

これで一番良かったtrialと最適なパラメータを確認できます。
ちなみに、study.best_trialで一番良かったtrialを確認できます。

plot_optimization_history(study)で学習の履歴を確認できますが、出力結果の画像は割愛します。
plot_param_importances(study)で学習に影響を与えているパラメータを確認したところ、圧倒的にlearning_rateが影響を与えてました。

#チューニングしたパラメータで再度学習と予測をする
#こっちは普通にKFold
%%time
sub_preds = np.zeros(test.shape[0])

kfolds = KFold(n_splits=4, shuffle=True, random_state=8)
for train_cv_no, eval_cv_no in kfolds.split(train):
    train_x_cv = train.iloc[train_cv_no]
    train_y_cv = SalePrice.iloc[train_cv_no]
    val_x_cv = train.iloc[eval_cv_no]
    val_y_cv = SalePrice.iloc[eval_cv_no]
    
    params = {
        'objective':'regression',
        'metric':'rmse',
        'verbosity':-1,
        'num_leaves':best_params['num_leaves'],
        'max_depth':best_params['max_depth'],
        'learning_rate':best_params['learning_rate'],
        'reg_alpha':best_params['reg_lambda'],
        'reg_lambda':best_params['reg_lambda'],
        'feature_fraction':best_params['feature_fraction'],
        'bagging_fraction':best_params['bagging_fraction'],
        'bagging_freq':best_params['bagging_freq'],
        'min_child_samples':best_params['min_child_samples'],
        'random_state':8   
    }

    model = lgb.LGBMRegressor(**params, n_estimators=500, early_stopping_rounds=200)
    model.fit(train_x_cv, train_y_cv, eval_set=[(val_x_cv, val_y_cv)])
    val_pred = model.predict(val_x_cv, num_iteration=model.best_iteration_)
    #submit用の予測をする。Fold数で割って平均値を算出する。
    sub_preds += model.predict(test, num_iteration=model.best_iteration_) / kfolds.n_splits
#損失関数
rmse = mse(val_y_cv, val_pred, squared=False)
print('RMSE:', rmse)

チューニングした最適なパラメータで、モデルに学習と予測を行わせます。
こっちは普通にKFoldで交差検証をします。
submit用の予測ですが、KFoldなのでn_splits分だけ大きくなります。
そのため、Fold数で割ることで平均の値を提出用の予測とします。
モデルの評価にはコンペで使われているRSMEを使います。
squared=FalseでRMSEが出力されます。

#特徴量の重要度を可視化
lgb.plot_importance(model, max_num_features=15, figsize=(10,10))
plt.show()

image.png

モデルの予測に重要だったパラメータは、最初の仮説にほぼ沿っています。
SFやAreaは広さに対するデータ、YearBuiltが家が建てられた年です。
Bsmtは地下部分のデータを意味します。
MasVnrArea(塀で囲まれているエリア、のはず)、OpenPorch(玄関ドア前の屋根下の広さ)も家が大きいほど広くなるはずなので、広さを表していると言えますね。
そこまで仮説との乖離がなかった重要度でした。
YearRemodAddは住居をリフォームした年になります。アメリカの住居事情ではリフォームすることで、資産価値が高める家主が多いようです。
築年数が重要というより綺麗に見える、手入れがされていて家の寿命が長くなる、ということの方が重要みたいです。
確かに、築年数が古くても綺麗にリフォームされていれば住みたくなりますね。

#submit用のCSVを作成
sub = pd.DataFrame({"id":test_id, "SalePrice":sub_preds})
sub.to_csv("submission.csv", index=False)

最後に、今回のコンペで指定されている形式のCSVファイルを作成してsubmitします。

#所感

submitしたスコアですが、一番良かったのが約0.124でした。
順位も変動していますが、大体上位17%あたりを彷徨ってます。

精度を上げるために試したのは、下記です。
-重要度の高い特徴量だけで学習
-相関係数の高い特徴量と築年数だけで学習
-特徴量のうち、相関の高い組み合わせがある場合は片方の削除
-PCAで定量データの次元圧縮を行う
-外れ値の除去
-数的データは列ごとの平均値、質的データは列ごとの最頻値で埋める
-LabelEncoder
-目的変数の対数化
単にデータを削る作戦は失敗でした。多重共線性の確認は割愛したので、別の機会にやろうと思います。
第三四分位数 + 1.5×IQR、つまり比較的高い価格に外れ値があったので、除去しましたが効果なし。
LabelEncoderを使って見たのですが、特に精度が良くなったりはしませんでした。
そもそも、lightgbmにカテゴリ型でデータを渡せば自動で処理してくれるので、わざわざ値を変換する必要はなさげですね。
また、int型のデータもfloat型にした方が精度が良くなりました。

結局、予測の精度上昇に貢献したのは相関の高い特徴量の削除、目的変数の対数化です。

#まとめ

今回は不動産でしたが、業務外で様々な分野のデータに触れられるのはKaggleのよさだなと思います。
業務では使わない分野のデータを扱うたびに思うのですが、データ分析にはドメイン知識が重要であることを改めて実感しました。
Kaggleで得た知見が業務に役立つこともあるので、継続していきたいです。

最後まで見てくださり、ありがとうございました。

17
14
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
17
14

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?