3
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

FortranのFFTWの使い方

Posted at

FortrannのFFTWの使い方あまり書いてあるところがないので、ここに示しておく。
ここでは、実数(倍精度)から複素数(倍精度)の変換を示す。

program main
  implicit none
  include 'fftw3.f'
  integer, parameter :: ix = 32
  real(8), dimension(ix) :: x
  real(8), dimension(ix) :: qq1,qq2
  complex(8), dimension(ix/2+1) :: fqq1,fqq2

  real(8) :: plan
  real(8) :: pi = 3.14159265359
  integer :: i
  real(8) :: xmin,xmax,dx

  xmin = 0
  xmax = 2.*pi
  dx = (xmax-xmin)/dble(ix)
  x(1) = 0.5d0*dx
  do i = 2,ix
     x(i) = x(i-1) + dx
  enddo

  do i = 1,ix
     qq1(i) = 1.d0
     qq2(i) = cos(2.d0*x(i))
  enddo

  call dfftw_plan_dft_r2c_1d(plan,ix,qq1,fqq1,FFTW_ESTIMATE)
  call dfftw_execute(plan)
  call dfftw_destroy_plan(plan)

  call dfftw_plan_dft_r2c_1d(plan,ix,qq2,fqq2,FFTW_ESTIMATE)
  call dfftw_execute(plan)
  call dfftw_destroy_plan(plan)

  do i = 1,ix/2+1
  write(*,*) fqq1(i)/dble(ix/2),fqq2(i)/dble(ix/2)
  enddo

  stop
end program main

xを0から2piの間で準備して、

  xmin = 0
  xmax = 2.*pi
  dx = (xmax-xmin)/dble(ix)
  x(1) = 0.5d0*dx
  do i = 2,ix
     x(i) = x(i-1) + dx
  enddo

定数関数(qq1)とsin関数 (qq2)を準備する。

  do i = 1,ix
     qq1(i) = 1.d0
     qq2(i) = cos(2.d0*x(i))
  enddo

FFTの実行は、

  1. planを準備して(dfftw_plan_dft_r2c_1d)
  2. 実行して(dfftw_execute)
  3. 破壊する(dfftw_destroy_plan)
    とする。

結果は、格子点数の係数がかかっているので、結果を見るときはそれを割る必要がある。

3
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?