Help us understand the problem. What is going on with this article?

乱数を使った単体テストのためのデコレータ

More than 5 years have passed since last update.

要約

乱数が使われていて、一定の確率で失敗する単体テストが失敗した時に、「焦らずもう一回やってみてね」と表示するデコレータ

ソース

randtest.py
import unittest
import numpy as np




def statistical(test):
    def do_test(self):
        try:
            test(self)
        except AssertionError as e:
            e.args += ("NOTE: this is a statistical test, which may fail.", )
            raise 
    return do_test




class TestHoge(unittest.TestCase):
    @statistical
    def test_normal(self):
        val = np.random.uniform(0, 1, 1)
        self.assertTrue(val[0] < 0.8) # 10回に2回くらい失敗する




if __name__ == "__main__":
    unittest.main()

statisticalというデコレータを定義しておいて、乱数を使ったテストの前に、@statisticalと置いておく。

実行結果

bash-3.2$ for i in $(seq 10); do ./randtest.py ; done
.
----------------------------------------------------------------------
Ran 1 test in 0.000s

OK
.
----------------------------------------------------------------------
Ran 1 test in 0.000s

OK
F
======================================================================
FAIL: test_normal (__main__.TestHoge)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "./randtest.py", line 14, in do_test
    test(self)
  File "./randtest.py", line 24, in test_normal
    self.assertTrue(val[0] < 0.8)
AssertionError: ('False is not true', 'NOTE: this is a statistical test, which may fail.')

----------------------------------------------------------------------
Ran 1 test in 0.006s

FAILED (failures=1)
...以下略...
hotoku
datawise
GPSデータの分析を専門とするDocomo系列のスタートアップです。
https://www.datawise.co.jp/
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした