1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

[数学]順列、組合せをWolframで求める

Posted at

順列(Permutaion)

  • 異なるn個のものの中から、r個を取り出して、並べるときの順列の数を$_n\mathrm{P} _r$と表す。

    $
    \begin{eqnarray}
    _n\mathrm{P} _r = \frac{n!}{(n-r)!}
    \end{eqnarray}
    $

組合せ(Combination)

  • n個のものの中から、r個を取り出すときの組合せの数を$_n\mathrm{C} _r$と表す。

    $
    \begin{eqnarray}
    _n\mathrm{C} _r = \frac{_n\mathrm{P} _r}{r!} = \frac{n!}{r!(n-r)!}
    \end{eqnarray}
    $

Wolframで計算

  • $_n\mathrm{C} _r$は、Wolframでは次のようにして計算できる。
    組合せ二項定理(binomial)で表現できる。

    binomial(n,r)
    
  • 同様に、$_n\mathrm{P} _r$は、Wolframでは次のようにして計算できる。

    $
    \begin{eqnarray}
    {_n\mathrm{P} _r} = {_n\mathrm{C} _r} \times r!
    \end{eqnarray}
    $

    binomial(n,r) * r!
    
1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?