1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

【python】時系列データをプロット

Last updated at Posted at 2020-03-29

時系列データを解析するとき、目的変数がどのように変化しているかを
時系列で確認するために、グラフとして可視化します。

手順
①日付カラムをインデックス化
 df.set_index('Date')
②プロット
 df.plot()
 plt.xticks(rotation=70)
③後の処理のために元に戻す
 df = df.reset_index()

date.py
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('dataset.csv')
df.head()

""" 出力
	patient	Last UpDdated	
0	5.0	    2020-03-22 10:00:00
1	4.0	    2020-03-22 11:00:00
2	6.0	    2020-03-22 12:00:00
3	10.0	2020-03-23 10:00:00	
4	3.0	    2020-03-23 11:00:00
"""

# 日付をインデックスにする
df = df.set_index('Last UpDdated')
df.head(3)

"""出力

Last UpDdated     patient	
2020-03-22 10:00:00	 5.0
2020-03-22 11:00:00	 4.0
2020-03-22 12:00:00	 6.0
"""

# プロット
df.plot()
# X軸のラベルの角度をかえる
plt.xticks(rotation=70)

ダウンロード (1).png

date.py
# 後の処理のためインデックスを戻しておく
df = df.reset_index()
df.head(3)

"""出力
    Last UpDdated	    patient
0	2020-03-22 10:00:00	5.0
1	2020-03-22 11:00:00	4.0
2	2020-03-22 12:00:00	6.0
"""
1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?