3
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

レラティブストレングス投資の月次シグナルを判定するpythonコード

Posted at

私のブログレラティブストレングス投資の月次シグナルを更新していますが、今まではデータ取得とエクセルでの計算を手作業でやっていました。

この度、月次シグナルを判定するpythonコードを書きました。なにぶんpython歴数か月の初心者なので、見苦しいコードかもしれませんがご容赦ください。私が確認した限りでは、正しく動いているようです。

#1. データのスクレイピング

[Monthly_check]RS_signal.ipynb
import numpy as np
import pandas as pd
from datetime import datetime
import urllib.request

#SMTAMウェブサイトから投信データcsvを取得して保存。
#スクレイピングを最小限に抑えるため、一度スクレイピングしたらcsvファイルとして保存。

JE:日本株EE:新興国株IE:先進国株JB:日本債券EB:新興国債券IB:先進国債券IR:先進国リートJR:日本リート
url_list = {'JE':'https://www.smtam.jp/chart_data/140833/140833.csv',
            'EE':'https://www.smtam.jp/chart_data/140841/140841.csv',
            'IE':'https://www.smtam.jp/chart_data/140834/140834.csv',
            'JB':'https://www.smtam.jp/chart_data/140835/140835.csv',
            'EB':'https://www.smtam.jp/chart_data/140842/140842.csv',
            'IB':'https://www.smtam.jp/chart_data/140836/140836.csv',
            'IR':'https://www.smtam.jp/chart_data/140838/140838.csv',
            'JR':'https://www.smtam.jp/chart_data/140837/140837.csv'} 

for key in url_list:
    url = url_list[key]
    title = "{0}.csv".format(key)
    urllib.request.urlretrieve(url,title)

#2. シグナル判定

[Monthly_check]RS_signal.ipynb
#全ファンドの累積基準価額をひとつにまとめたデータを作成
assets = ['JE','EE','IE','JB','EB','IB','JR','IR']
df_all = pd.DataFrame()
for asset in assets:
    asset_file = "{0}.csv".format(asset)
    df = pd.read_csv(asset_file, skiprows = [0], names = ['date','nav', 'div', 'aum'],
                    parse_dates = True, index_col = 0)

    df['div'] = pd.to_numeric(df['div'],errors='coerce')
    df['div'] = df['div'].fillna(0)
    
    df['cum_nav'] = (df['nav'] + df['div']) / df['nav'].shift(1)
    df[asset] = df['cum_nav'].cumprod()
    df_all[asset] = df[asset]


#日次データを月次データに変換してシグナル判定
dfm = df_all.resample('M').ffill()
dfm = dfm[dfm.index < datetime.now()] 

calc = pd.DataFrame(columns = ['JE','EE','IE','JB','EB','IB','JR','IR'])
calc.loc['asset class'] = ['日本株','新興国株','先進国株','日本債券','新興国債券',
                          '先進国債券','日本リート','先進国リート']
calc.loc['3 months'] = (dfm.iloc[-1] / dfm.iloc[-4] -1)*100
calc.loc['6 months'] = (dfm.iloc[-1] / dfm.iloc[-7] -1)*100
calc.loc['12 months'] = (dfm.iloc[-1] / dfm.iloc[-13] -1)*100
calc.loc['mean'] = (calc.loc['3 months']+calc.loc['6 months']+calc.loc['12 months'])/3
calc.loc['rank'] = calc.loc['mean'].rank(ascending = False).astype(int)
calc.loc['latest nav'] = dfm.iloc[-1]
calc.loc['12ma NAV'] = dfm.iloc[-12:].mean()
calc.loc['Buy/Sell'] = np.where(calc.loc['latest nav'] > calc.loc['12ma NAV'], 'Buy', 'Sell')

#月次シグナル判定結果を表示
date = dfm.index.max()
print(str(date.year) + '' + str(date.month) + '月末のシグナルは以下の通りとなりました。')
calc.T.set_index('rank')[['asset class', 'Buy/Sell']].sort_index()

実行するとJupyter Notebook上に、以下のように表示される(はずです)。
output.png
#3. ブログに反映
上記シグナルを反映したブログ記事はこちらです。
 ↓
【レラティブストレングス投資月次シグナル解説(2020年3月末基準)】

#4. おわりに
月次シグナルエクセル更新手作業の、数十年分の時間をかけてやっと完成ました。
費用対効果を出すには数十年使わなければなりません。

シグナル判定するくだりのコードがいかにも素人臭いです。上達したら改善したいと思います。

3
6
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?