Help us understand the problem. What is going on with this article?

# 運動方程式のガリレイ変換のメモ

More than 1 year has passed since last update.

$\displaystyle xyz$ 座標から $\displaystyle x'y'z'$ 座標への変換がガリレイ変換のとき，

\begin{equation*}
t'=t\ ,\ x'=x-V_{x} t\ ,\ y'=y-V_{y} t\ ,\ z'=z-V_{z} t
\end{equation*}

\begin{equation*}
\frac{dx'}{dt'} =\frac{dx}{dt} -V_{x} \ ,\ \frac{dy'}{dt'} =\frac{dy}{dt} -V_{y} \ ,\ \frac{dz'}{dt'} =\frac{dz}{dt} -V_{z}
\end{equation*}

\begin{equation*}
\frac{d^{2} x'}{dt^{\prime 2}} =\frac{d^{2} x}{dt^{2}} \ ,\ \frac{d^{2} y'}{dt^{\prime 2}} =\frac{d^{2} y}{dt^{2}} \ ,\ \frac{d^{2} z'}{dt^{\prime 2}} \ =\frac{d^{2} z}{dt^{2}}
\end{equation*}


ここで，$\displaystyle xyz$ 座標での運動方程式は，

\begin{equation*}
m\frac{d^{2} x}{dt^{2}} =F_{x} \ ,\ m\frac{d^{2} y}{dt^{2}} =F_{y} \ ,\ m\frac{d^{2} z}{dt^{2}} =F_{z}
\end{equation*}


つまり，

\begin{equation*}
F_{x'} =F_{x} \ ,\ F_{y'} =F_{y} \ ,\ F_{z'} =F_{z}
\end{equation*}


\begin{equation*}
m\frac{d^{2} x'}{dt^{\prime 2}} =F_{x'} \ ,\ m\frac{d^{2} y'}{dt^{\prime 2}} =F_{y'} \ ,\ m\frac{d^{2} z'}{dt^{\prime 2}} =F_{z'}
\end{equation*}


となり，$\displaystyle x'y'z'$座標における運動方程式は $\displaystyle xyz$ 座標におけるものと同じ形になる．
したがって運動方程式はガリレイ変換に関して共変性があるといえる．

いつもギリギリ
Why not register and get more from Qiita?
1. We will deliver articles that match you
By following users and tags, you can catch up information on technical fields that you are interested in as a whole
2. you can read useful information later efficiently
By "stocking" the articles you like, you can search right away