2
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

運動方程式のガリレイ変換のメモ

Posted at

$\displaystyle xyz$ 座標から $\displaystyle x'y'z'$ 座標への変換がガリレイ変換のとき,


\begin{equation*}
t'=t\ ,\ x'=x-V_{x} t\ ,\ y'=y-V_{y} t\ ,\ z'=z-V_{z} t
\end{equation*}

\begin{equation*}
\frac{dx'}{dt'} =\frac{dx}{dt} -V_{x} \ ,\ \frac{dy'}{dt'} =\frac{dy}{dt} -V_{y} \ ,\ \frac{dz'}{dt'} =\frac{dz}{dt} -V_{z}
\end{equation*}

\begin{equation*}
\frac{d^{2} x'}{dt^{\prime 2}} =\frac{d^{2} x}{dt^{2}} \ ,\ \frac{d^{2} y'}{dt^{\prime 2}} =\frac{d^{2} y}{dt^{2}} \ ,\ \frac{d^{2} z'}{dt^{\prime 2}} \ =\frac{d^{2} z}{dt^{2}}
\end{equation*}

ここで,$\displaystyle xyz$ 座標での運動方程式は,


\begin{equation*}
m\frac{d^{2} x}{dt^{2}} =F_{x} \ ,\ m\frac{d^{2} y}{dt^{2}} =F_{y} \ ,\ m\frac{d^{2} z}{dt^{2}} =F_{z}
\end{equation*}

つまり,


\begin{equation*}
F_{x'} =F_{x} \ ,\ F_{y'} =F_{y} \ ,\ F_{z'} =F_{z}
\end{equation*}

以上より,


\begin{equation*}
m\frac{d^{2} x'}{dt^{\prime 2}} =F_{x'} \ ,\ m\frac{d^{2} y'}{dt^{\prime 2}} =F_{y'} \ ,\ m\frac{d^{2} z'}{dt^{\prime 2}} =F_{z'}
\end{equation*}

となり,$\displaystyle x'y'z' $座標における運動方程式は $\displaystyle xyz$ 座標におけるものと同じ形になる.
したがって運動方程式はガリレイ変換に関して共変性があるといえる.

2
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?