0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

二項係数についての等式

Last updated at Posted at 2019-08-25
\def\bi(#1,#2){{}_{#1}\!\mathrm{C}_{#2}}
\def\fraction(#1/#2){\frac{#1}{#2}}

二項係数

二項係数は,次のように定義しておく。

\bi(a,b) := \fraction(a!/{(a-b)!b!})
\qquad 
(a \geq b) 

二項係数の和

\bi(n,0) + \bi(n,1) + \bi(n,2) + \bi(n,3) + \cdots + \bi(n,n)
=
2^n
\bi(n,0) - \bi(n,1) + \bi(n,2) - \bi(n,3) + \cdots (-1)^n \bi(n,n)
=
0

つまり

\sum_{k=0}^n \bi(n,k) =2^n
\\
\sum_{k=0}^n (-1)^k \bi(n,k) =0 

証明

\begin{eqnarray}
(1+x)^n = \sum_{k=0}^n \bi(n,k) x^k
\end{eqnarray}

両辺のxに1を代入して,証明終了。

\begin{eqnarray}
(1-x)^n = \sum_{k=0}^n \bi(n,k) (-1)^k x^k
\end{eqnarray}

両辺のxに1を代入して,証明終了。

帰納法による証明
「ただいま編集中」

係数つき二項係数

$$
\sum _{k=1}^n k \bi(n,k) = 2^{n-1} n
$$

$$
\sum_{k=1}^{n-1} (-1)^k k \bi(n,k) = (-1)^n (-n)
$$

直接的な証明

\begin{eqnarray}
k \bi(n,k)
&=&
k \fraction(n!/{(n-k)! k!})\\
&=& \fraction(n!/{(n-k)! (k-1)!}) \\
&=& n\fraction({(n-1)!}/{(n-1-[k-1])! (k-1)!}) \\
&=& n \bi(n-1,k-1) \\
\end{eqnarray}
\begin{eqnarray}
\sum _{k=1}^n k \bi(n,k) 
&=& \sum _{k=1}^n \bi(n-1,k-1) n \\
&=& 2^{n-1} n
\end{eqnarray}
\begin{eqnarray}
\sum _{k=1}^n (-1)^k k \bi(n,k) 
&=& \sum _{k=1}^n (-1)^k \bi(n-1,k-1) n \\
&=& 0
\end{eqnarray}
\sum _{k=1}^{n-1} (-1)^k k \bi(n,k) = - (-1)^{n} n \bi(n,n)

より示せた。

多項式を微分する証明
\begin{eqnarray}
(1-x)^n = \sum_{k=0}^n \bi(n,k) (-1)^k x^k
\end{eqnarray}

両辺をxで微分して

\begin{eqnarray}
-n (1-x)^{n-1} = \sum_{k=1}^n k \cdot \bi(n,k) (-1)^k x^{k-1}
\end{eqnarray}

1 を代入する

\begin{eqnarray}
0 &=& \sum_{k=1}^n k \bi(n,k) (-1)^k
\\
\sum_{k=1}^{n-1} k \bi(n,k) (-1)^k &=& - n \bi(n,n)(-1)^n
\end{eqnarray}

和をとる範囲に注意して頂きたい。

二項係数の積の和

次のような和を考える。右辺は計算結果。

-\bi(2,1)
=
-2
-\bi(3,1) + \bi(3,2)\bi(2,1)
=
3
-\bi(4,1) + \bi(4,2)\bi(2,1) + \bi(4,3)\bi(3,1) - \bi(4,3)\bi(3,2)\bi(2,1)
=
-4
\begin{eqnarray}
&&-\bi(5,1)
\\
&&+ \bi(5,2)\bi(2,1) + \bi(5,3)\bi(3,1) + \bi(5,4)\bi(4,1)
\\
&&- \bi(5,3)\bi(3,2)\bi(2,1) - \bi(5,4)\bi(4,3)\bi(3,1) - \bi(5,4)\bi(4,2)\bi(2,1)
\\
&&+ \bi(5,4)\bi(4,3)\bi(3,2)\bi(2,1)
\\
&&=5
\end{eqnarray}

うまく表記することが難しいが,$k\geq 2$に対して一般に次のような等式が成立する

\begin{eqnarray}
&&-\bi(k,1)\\
&&+ \bi(k,2)\bi(2,1) + \bi(k,3)\bi(3,1) +\cdots  +\bi(k,k-1)\bi(k-1,1)\\
&&\vdots \\
&& + (-1)^j \sum_{a_1-a_j = k-1, a1 > a_2 > \cdots > a_j} \prod _{i=1}^j \bi(a_i,a_{i-1})
\\
&& \vdots\\ 
&&+ (-1)^{k-1} \bi(k,k-1)\bi(k-1,k-2) \cdots \bi(2,1)\\
&&=(-1)^k (-k)
\end{eqnarray}

証明は帰納法で行う。表記が煩雑になるので,記号を導入する。

\begin{eqnarray}
S_k
&:=&-\bi(k,1)\\
&&+ \bi(k,2)\bi(2,1) + \bi(k,3)\bi(3,1) +\cdots  +\bi(k,k-1)\bi(k-1,1)\\
&&\vdots \\
&& + (-1)^j \sum_{a_1-a_j = k-1, a1 > a_2 > \cdots > a_j} \prod _{i=1}^j \bi(a_i,a_{i-1})
\\
&& \vdots\\ 
&&+ (-1)^{k-1} \bi(k,k-1)\bi(k-1,k-2) \cdots \bi(2,1)\\
&&=(-1)^k (-k)
\end{eqnarray}

S_1, S_2,... ,S_kで成立していると仮定。

\begin{eqnarray}
S_{k+1}
&=&-\bi(k+1,1)\\
&&- \bi(k+1,k) S_k\\
&&- \bi(k+1,k-1) S_{k-1}\\
&&\vdots \\
&& - \bi(k+1,1) S_2\\

&&= \sum_{j=1}^k \bi(k+1,j) (-1)^j (-j)
\\
&&= (-1)^{k+1}(k+1) 
\end{eqnarray}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?