1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

畳み込みカーネルの半正定値性チェック

Last updated at Posted at 2016-12-14

経験則を用いたチェック
Nとdを任意の値に設定して、任意の回数繰り返す。

checkpositivesemidefinite.py

import numpy as np 

def possemicheck(X,C):
    N = len(C)
    K = np.empty([N,N])
    summe = 0
    for i in range(N):
        for j in range(N):
            K[i][j] = np.linalg.norm(np.convolve(X[i],X[j]))**2
            summe = summe + (C[i]*C[j]*K[i][j])

    if (summe>=0):
        output = True
    else:
        output = False
    return output, summe

N = 300 # データセットの数
d = 200 # データセットの次元
ite = 10 #繰り返しの回数
a = 1
for i in range(ite):
    X = np.random.randn(N, d) 
    C = np.random.randn(N)
    output, summe = possemicheck(X,C)
    print summe
    a = a * output
if (a==True):
    print("the kernel is positive semi-definite")
else:
    print("the kernel is not positive semi-definite")

数学的証明
Bildschirmfoto3.png

possemidef.tex
\documentclass{amsart}
\usepackage{pdfpages}
\title{Possemidef}
\begin{document}
Covolution Kernel\\ 
Let $x$, $x'$ be two univariate real-valued discrete time series.\\
\begin{eqnarray*}
k(x,x') = || x \ast x'||^2
\end{eqnarray*}
\\
Proof that the convolution kernel is positive semi-definite: \\
\begin{eqnarray*}
\sum_i \sum_j c_i c_j k(x_i, x_j) \geq 0 \ \ \ \ c_i, c_j \in \mathbb{R}
\end{eqnarray*}
\begin{equation*}
\left.
\begin{array}{r@{\;}ll}
\sum_i \sum_j c_i c_j k(x_i, x_j) & = \sum_i \sum_j c_i c_j || x_i \ast x_j||^2 &\\
&=\sum_i \sum_j c_i c_j \sum_t(\sum_{\tau} x_i(\tau)x_j(t-\tau) )^2 &\\	
&=\sum_i \sum_j c_i c_j \sum_t(\sum_{\tau} x_i(\tau)x_j(t-\tau) )(\sum_{\tau'} x_i(\tau')x_j(t-\tau') )& \ \ \ | \ \ x_i * x_j = x_j * x_i  \ \ \  \\
&=\sum_i \sum_j c_i c_j \sum_t(\sum_{\tau} x_i(\tau)x_j(t-\tau) )(\sum_{\tau'} x_j(\tau')x_i(t-\tau') )& \\
&= \sum_t \sum_i \sum_j c_i c_j \sum_{\tau}\sum_{\tau'} x_i(\tau)x_j(t-\tau) x_j(\tau')x_i(t-\tau')& \ \ \ |s = t - \tau -\tau' \\
& & \ \ \ |t - \tau = s + \tau' \\
& & \ \ \ |t - \tau' = s + \tau \\

&=\sum_s \sum_i \sum_j c_i c_j \sum_{\tau}\sum_{\tau'} x_i(\tau)x_j(s+\tau') x_j(\tau')x_i(s+\tau) & \\
&=\sum_s \sum_i \sum_j c_i c_j \sum_{\tau}\sum_{\tau'} x_i(\tau)x_i(s+\tau) x_j(\tau')x_j(s+\tau') & \\
&=\sum_s (\sum_i \sum_{\tau} c_i x_i(\tau)x_i(s+\tau))( \sum_j \sum_{\tau'}c_j x_j(\tau')x_j(s+\tau')) & \\
&=\sum_s (\sum_i \sum_{\tau} c_i x_i(\tau)x_i(s+\tau))^2 \geq 0
\end{array}
\right\}
\end{equation*}
\end{document}
1
1
4

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?