2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

どう書く過去問Advent Calendar 2013

Day 9

フカシギの通行止め(2012.9.16の過去問)

Posted at

1日1個 @nabetani さんの作った問題を解くAdventCalendarの9日目です。

今日の問題は http://qiita.com/Nabetani/items/9c514267214d3917edf2 にあります。

module Doukaku.Hukashigi (solve) where
import Data.Char (ord)
import Data.List.Split (splitOn)
import qualified Data.Set as Set

type Pt = (Int, Int)

areaSize :: Int
areaSize = 5

solve :: String -> String
solve input = show $ walk areaSize stop (0, 0) Set.empty
  where
    stop = parse input

parseChar :: Char -> Pt
parseChar = flipTupple . flip divMod areaSize . (subtract $ ord 'a') . ord
  where
    flipTupple (x, y) = (y, x)

parse :: String -> Set.Set (Pt, Pt)
parse input = Set.fromList . map parse' $ stops
  where stops = filter (not . null) . splitOn " " $ input
        parse' (x:y:_) = (parseChar x, parseChar y)

isStop :: Set.Set (Pt, Pt) -> Pt -> Pt -> Bool
isStop stop p1 p2 = Set.member (p1, p2) stop || Set.member (p2, p1) stop

walk :: Int -> Set.Set (Pt, Pt) -> Pt -> Set.Set Pt -> Int
walk size stop current@(x, y) done
  | current == (size - 1, size - 1) = 1
  | x < 0 || x >= size || y < 0 || y >= size = 0
  | otherwise = walk' (x, y - 1) + walk' (x, y + 1)
                + walk' (x - 1, y) + walk' (x + 1, y)
  where
    done' = Set.insert (x, y) done
    walk' pt' = if pt' `Set.member` done || isStop stop current pt'
                then 0
                else walk size stop pt' done'

この問題にはsimpath( https://github.com/hiratara/p5-Simpath )という大変効率のよいアルゴリズムが存在しているのですが、今回は素朴な探索で解いています。行き止まりとすでに行った頂点の管理にData.Setを使っています。

問題ページに他の方の回答もありますので、見ると参考になるでしょう。

2
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?