1
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

WEBカメラから抜いたフレームをYolov2で解析し、結果ファイルをDropboxへ逐次送信する

Last updated at Posted at 2018-11-25

ひとまずメモ。編集途中。
#やったこと
WEBカメラを起動し、フレームを抜いてyolov2にかけて、検知した猫の数をファイルに吐き出したあと、それをDropbox上のあるフォルダにアップロード(すでにあれば上書き)するプログラム。Dropboxへの上書きの更新でAPI使う部分の書き方がよくわからず、時間を食った。動きばいいやの精神なので、まだ荒削り。Dropboxのトークン取得の仕方は割愛。

from darkflow.net.build import TFNet
import cv2
import numpy as np
import time
import datetime
import dropbox

dbx=dropbox.Dropbox('???')#???にはキーを入力
dbx.users_get_current_account()


options = {"model": "cfg/yolo.cfg", "load": "yolov2.weights", "threshold": 0.1}
tfnet = TFNet(options)

# カメラの起動
cap = cv2.VideoCapture(0)

class_names = ['person','aeroplane', 'bicycle', 'bird', 'boat', 'bottle',
              'bus', 'car', 'cat', 'chair', 'cow', 'diningtable',
              'dog', 'horse', 'motorbike', 'pottedplant',
              'sheep', 'sofa', 'train', 'tvmonitor']

num_classes = len(class_names)
class_colors = []
for i in range(0, num_classes):
    hue = 255*i/num_classes
    col = np.zeros((1,1,3)).astype("uint8")
    col[0][0][0] = hue
    col[0][0][1] = 128
    col[0][0][2] = 255
    cvcol = cv2.cvtColor(col, cv2.COLOR_HSV2BGR)
    col = (int(cvcol[0][0][0]), int(cvcol[0][0][1]), int(cvcol[0][0][2]))
    class_colors.append(col)

def main():

    count=0
    start=time.time()

    while(True):

        # 動画ストリームからフレームを取得
        ret, frame = cap.read()
        frame=cv2.resize(frame,(int(frame.shape[1]/4),int(frame.shape[0]/4)))#リサイズ
        result = tfnet.return_predict(frame)#物体検出の実行とその結果をresultへ格納

        count=0#ここに初期化を入れると、1フレームずつの人数になり、ここを消すと累計になる

        for item in result:
            tlx = item['topleft']['x']
            tly = item['topleft']['y']
            brx = item['bottomright']['x']
            bry = item['bottomright']['y']
            label = item['label']
            conf = item['confidence']

            if conf > 0.6:
                class_num=0
                for i in class_names:
                    if label == i:
                        class_num = class_names.index(i)
                        break

                #print('class_num=',class_num)
                if(class_num == 8):
                    count=count+1

                d=datetime.datetime.today()
                print('cat_count=',count,d)#catだった場合、カウントを増やす
                str_count=str(count)
                str_time=str(d)
                f=open('./result/test.txt','a')
                f.write(str_count)
                f.write('\t')
                f.write(str_time)
                f.write('\n')
                f.close()

                #枠の作成
                cv2.rectangle(frame, (tlx, tly), (brx, bry), class_colors[class_num], 2)

                #ラベルの作成
                text = label + " " + ('%.2f' % conf)
                cv2.rectangle(frame, (tlx, tly - 15), (tlx + 100, tly + 5), class_colors[class_num], -1)
                cv2.putText(frame, text, (tlx, tly), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1)

        # 表示
        cv2.imshow("Show FLAME Image", frame)

        # escを押したら終了。
        k = cv2.waitKey(10);
        if k == 27:  break;
        time.sleep(1)
        process_time=time.time()-start#かかった時間の計算
        print('process_time=',process_time)
        if(process_time>10):
            print('10秒経過')
            f=open('./result/test.txt','rb')
            dbx.files_upload(f.read(),'/result/test.txt',mode=dropbox.files.WriteMode.overwrite)
            f.close()
            start=time.time()

    cap.release()
    cv2.destroyAllWindows()

if __name__ == '__main__':
    main()
1
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?