Qiita Teams that are logged in
You are not logged in to any team

Log in to Qiita Team
Community
OrganizationAdvent CalendarQiitadon (β)
Service
Qiita JobsQiita ZineQiita Blog
Help us understand the problem. What is going on with this article?

Python でデータ可視化 - カッコいいヒートマップを描こう

More than 5 years have passed since last update.

Pythonでのグラフ描画

Pythonチャートを描く場合の定番は「matplotlib」ですが、その見た目のやや野暮ったい感じと、
表記法のややこしさが指摘されています。

そこで、この記事ではMatplotlibの機能をより美しく、またより簡単に実現するためのラッパー的存在である、「Seaborn」の使い方を取り上げます。
Seabornについてと、初歩的な使い方については下記リンクをご覧ください。

◆pythonで美しいグラフ描画 -seabornを使えばデータ分析と可視化が捗る その1
http://qiita.com/hik0107/items/3dc541158fceb3156ee0

ヒートマップ

seabornでは下記のように美しいヒートマップを描くことが出来ます
(SeabornのTutorialサイトより抜粋)

見た目にもインパクトがあり、数字があまり得意でない人にもウケがよかったりするので、重宝します。
使い方を覚えておいて損はないと思います。

image

参考)
http://stanford.edu/~mwaskom/software/seaborn/examples/many_pairwise_correlations.html

やり方

ではやり方を説明していきます。
必要な下記のライブラリをインポートしておきます

prepare.py
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

データを用意し、読みこませる形式に変換します。
seabornにはいくつかのデータセットがデフォルトでバンドルされているのでそれを使っていきましょう。
今回は『flights』というデータを使ってみます

data.py
df_flights = sns.load_dataset('flights')
df_flights.head(5)

headでみてみると、yearとmonthでひたすら縦に伸びたデータであることがわかります。

data.py
    year    month       passengers
0   1949    January     112
1   1949    February    118
2   1949    March       132
3   1949    April       129
4   1949    May         121

ここで仮に、yearとmonthの2軸でpassengersにどのような傾向があるか興味があるとしましょう。
つまり、x-year,y-monthのヒートマップを描くことにします。

ヒートマップはsns.heatmap という関数で描けますが、喰わせるデータに工夫が必要です。
xに持ってきたい軸をindexに、yに持ってきたい軸をcolumnに持つPivot形式に直してやる必要があります

data.py
df_flights_pivot = pd.pivot_table(data=df_flights, values='passengers', 
                                  columns='year', index='month', aggfunc=np.mean)

Python Pandasでのデータ加工に馴染みがない方は下記あたりを参考にしてみてください。

参考:Pythonによるデータ加工

Python Pandasでのデータ操作の初歩まとめ − 前半&後半
http://qiita.com/hik0107/items/d991cc44c2d1778bb82e
http://qiita.com/hik0107/items/0ae69131e5317b62c3b7

あとは、Pivot形式にしたdataframeをseabornに与えるだけです

draw.py
sns.heatmap(df_flights_pivot)

こんな感じの図が表示されます。
1949年から年を追うごとに全体的に乗客数が増加し、特に7~8月あたりは
特に乗客数が多いことが一発で見て取れます。
また、毎年11月はやや客数が落ち着き、12月はまた増加するようですね。

image

もう少しお化粧

上記図のままでもいいのですが、もう少し見せ方を変えるためにお化粧を施してみましょう。
例えばこんな感じです

draw.py
plt.figure(figsize=(12, 9))
sns.heatmap(df_flights_pivot, annot=True, fmt='g', cmap='Blues')

annotは数値をセルに書き込む引数、fmtは数値の桁の調整、cmapはColour_mapのことで、
グラディエーションの色のパレットを指定します。

このようになります。具体的な数値を見ながら議論したいときはこっちのほうがよいでしょう。

image

こちらの記事も

pythonで美しいグラフ描画 -seabornを使えばデータ分析と可視化が捗る その1
http://qiita.com/hik0107/items/3dc541158fceb3156ee0

pythonで美しいグラフ描画 -seabornを使えばデータ分析と可視化が捗る その2
http://qiita.com/hik0107/items/7233ca334b2a5e1ca924

データサイエンティストに興味があるならまずこの辺りを見ておきな、って文献・動画のまとめ
http://qiita.com/hik0107/items/ef5e044d2f47940ba712

hik0107
メルカリという会社で分析やっています ⇛ 詳しくはhttps://goo.gl/7unNqZ / アナリスト絶賛採用中。/ Twitter ⇛ https://twitter.com/hik0107 最近はもっぱら物書きは note ⇛ https://note.mu/hik0107
https://note.mu/hik0107
mercari
フリマアプリ「メルカリ」を、グローバルで開発しています。
https://tech.mercari.com/
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away