10
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

もっと簡単に Keras BERT でファインチューニングしてみる

Posted at

もっと簡単に Keras BERT でファインチューニングしてみる

TL;DR

text-vectorianをバージョンアップし、BERT のファインチューニングで役に立つ機能を追加しました。

BERT のモデルやベンチマーク用のデータなどはKeras BERT でファインチューニングしてみるを参照してください。

事前準備

BERT モデルのダウンロード

BERT のモデルは別途準備する必要があります。 日本語 Wikipedia を元に学習した学習済みモデルは以下の方が提供されています。

以下のファイルをダウンロードしておきます。

  • wiki-ja.vocab
  • wiki-ja.model
  • model.ckpt-1400000.data-00000-of-00001
  • model.ckpt-1400000.index
  • model.ckpt-1400000.meta

text-vectorian のインストール

pip intall text-vectorian

バージョンは0.2.0以上であることを確認してください。

Keras BERT の Config

text-vectorianではKeras BERTを使用していますが、以下の設定をデフォルトで利用します。

{
    "attention_probs_dropout_prob": 0.1,
    "hidden_act": "gelu",
    "hidden_dropout_prob": 0.1,
    "hidden_size": 768,
    "initializer_range": 0.02,
    "intermediate_size": 3072,
    "max_position_embeddings": 128,
    "max_seq_length": 128,
    "num_attention_heads": 12,
    "num_hidden_layers": 12,
    "type_vocab_size": 2,
    "vocab_size": 32000
}

max_position_embeddingsmax_seq_lengthについては、トークンが大きい場合はモデルの最大である 512 まで拡張することができます。
デフォルトとは異なる設定を使用する場合は、上記のJSONを任意のファイルとして保存し、SpBertVectorianにパラメータとして指定してください。
デフォルトのまま実行する場合は、config_filenameは必要ありません。

vectorizer_filename = f'{ROOT_DIR}/bert-japanese/model/model.ckpt-1400000'
tokenizer_filename = f'{ROOT_DIR}/bert-japanese/model/wiki-ja.model'
config_filename = f'{ROOT_DIR}/my-config.json'
vectorian = SpBertVectorian(
    tokenizer_filename=tokenizer_filename,
    vectorizer_filename=vectorizer_filename,
    config_filename=cofnig_filename
)

ソースコード

モジュールのロード

from text_vectorian import SpBertVectorian

# `model.ckpt-1400000` のように拡張子を付けないのがポイントです。
vectorizer_filename = f'{ROOT_DIR}/bert-japanese/model/model.ckpt-1400000'
tokenizer_filename = f'{ROOT_DIR}/bert-japanese/model/wiki-ja.model'
vectorian = SpBertVectorian(
    tokenizer_filename=tokenizer_filename,
    vectorizer_filename=vectorizer_filename
)

データロード用関数

import pandas as pd
import sentencepiece as spm
from keras import utils
from keras.preprocessing.sequence import pad_sequences
import logging
import numpy as np

def _load_labeldata(train_dir, test_dir):
    train_features_df = pd.read_csv(f'{train_dir}/features.csv')
    train_labels_df = pd.read_csv(f'{train_dir}/labels.csv')
    test_features_df = pd.read_csv(f'{test_dir}/features.csv')
    test_labels_df = pd.read_csv(f'{test_dir}/labels.csv')
    label2index = {k: i for i, k in enumerate(train_labels_df['label'].unique())}
    index2label = {i: k for i, k in enumerate(train_labels_df['label'].unique())}
    class_count = len(label2index)
    train_labels = utils.np_utils.to_categorical([label2index[label] for label in train_labels_df['label']], num_classes=class_count)
    test_label_indices = [label2index[label] for label in test_labels_df['label']]
    test_labels = utils.np_utils.to_categorical(test_label_indices, num_classes=class_count)

    train_features = []
    test_features = []

    for feature in train_features_df['feature']:
        train_features.append(vectorian.fit(feature, suppress_vectors=True).indices)
    train_segments = vectorian.get_segments()
    vectorian.reset()
    for feature in test_features_df['feature']:
        test_features.append(vectorian.fit(feature, suppress_vectors=True).indices)
    test_segments = vectorian.get_segments()

    print(f'Trainデータ数: {len(train_features_df)}, Testデータ数: {len(test_features_df)}, ラベル数: {class_count}')

    return {
        'class_count': class_count,
        'label2index': label2index,
        'index2label': index2label,
        'train_labels': train_labels,
        'test_labels': test_labels,
        'test_label_indices': test_label_indices,
        'train_features': np.array(train_features),
        'train_segments': np.array(train_segments),
        'test_features': np.array(test_features),
        'test_segments': np.array(test_segments)
    }

モデル準備関数

from keras import Model
from keras.layers import Dense
import keras

def _create_model(class_count, samples_len, batch_size, epochs):
    layers = vectorian.get_keras_layer(trainable=True)
    optimizer = vectorian.get_optimizer(samples_len=samples_len, batch_size=batch_size, epochs=epochs)

    output_tensor = keras.layers.Dense(class_count, activation='softmax')(layers['last'])
    model = keras.Model(layers['inputs'], output_tensor)
    model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['mae', 'mse', 'acc'])
    model.summary()

    return model

データのロードとモデルの準備

trains_dir = f'{ROOT_DIR}/word-or-character/data/trains'
tests_dir = f'{ROOT_DIR}/word-or-character/data/tests'

data = _load_labeldata(trains_dir, tests_dir)
samples_len = len(data['train_features'])
batch_size = 8
epochs = 10

model = _create_model(data['class_count'], samples_len, batch_size, epochs)

学習の実行

from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard
import pandas as pd

model_filename = 'bert.model'

history = model.fit([data['train_features'], data['train_segments']],
          data['train_labels'],
          epochs = epochs,
          batch_size = batch_size,
          validation_data=([data['test_features'], data['test_segments']], data['test_labels']),
          shuffle=False,
          verbose = 1,
          callbacks = [
              ModelCheckpoint(monitor='val_acc', mode='max', filepath=model_filename, save_best_only=True)
          ])
display(pd.DataFrame(history.history))

クラシフィケーションレポート

from sklearn.metrics import classification_report, confusion_matrix
from keras.models import load_model
from keras_bert import get_custom_objects

model = load_model(model_filename, custom_objects=get_custom_objects())

predicted_test_labels = model.predict([data['test_features'], data['test_segments']]).argmax(axis=1)
numeric_test_labels = np.array(data['test_labels']).argmax(axis=1)

report = classification_report(
        numeric_test_labels, predicted_test_labels, target_names=['グルメ', '携帯電話', '京都', 'スポーツ'], output_dict=True)

display(pd.DataFrame(report).T)

まとめ

Keras BERT でファインチューニングしてみるとほぼ同じ結果をえる事ができました。
text-vectorianを利用することで、BERT固有の前処理などを省略することができます。

ファインチューニングを行わずにベクトルだけ取得する場合

ファインチューニングが不要の場合は、以下の様に簡単にBERTによるベクトルだけ取得することが可能です。

from text_vectorian import SpBertVectorian

tokenizer_filename = '[モデルをダウンロードしたディレクトリ]/model/wiki-ja.model'
vectorizer_filename = '[モデルをダウンロードしたディレクトリ]/model/model.ckpt-1400000'
vectorian = SpBertVectorian(
    tokenizer_filename=tokenizer_filename,
    vectorizer_filename=vectorizer_filename,
)

text = 'これはテストです。'
vectors = vectorian.fit(text).vectors

参考文献

10
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
10
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?