1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

任意の型のカラム名を取り出す方法(pandas)

Last updated at Posted at 2023-05-07

結論

以下のように型を指定する.

#int型を取り出す時
df.columns[df.dtypes == "int"]

#float型を取り出す時
df.columns[df.dtypes == "gfloat"]

#category型を取り出す時
df.columns[df.dtypes == "category"]

出力

Index(['columns1', 'columns2',...], dtype='object')

dfは,$N\times M$のDataFrameです.

簡単な例

小数と整数値(カテゴリ)が混ざったdafaframeを生成します.

import pandas as pd

point_data = pd.DataFrame(np.arange(9.0).reshape(3, 3),
                  columns=['point_0', 'point_1', 'point_2'])
category_data = pd.DataFrame(np.arange(6).reshape(3, 2),
                  columns=['category_0', 'category_1'])
df = pd.concat([point_data, category_data], axis = 1)

dfの中身は,以下のようになっています.

   point_0  point_1  point_2  category_0  category_1
0      0.0      1.0      2.0           0           1
1      3.0      4.0      5.0           2           3
2      6.0      7.0      8.0           4           5

今回は例として,int型のカラムを抽出します.

df.columns[df.dtypes == "int"]

出力

Index(['category_0', 'category_1'], dtype='object')

データフレームの中身を確認します.

df[df.columns[df.dtypes == "int"]]
   category_0  category_1
0           0           1
1           2           3
2           4           5

用途

カテゴリ変数に強い機械学習モデル"Catboost"の引数に,カテゴリ変数名(int型 or category型)を指定する時などに使えます.
その時は,

import catboost as cb

category_features_name = point_data.columns[(point_data.dtypes == "int") | (point_data.dtypes == "category")]
clf = cb.CatBoostClassifier(cat_features = category_features_name, verbose = 0)
1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?