0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

三角関数・双曲線関数の虚数表示チートシート

Posted at

複素数範囲で考えると、三角関数と双曲線関数は表裏一体の関係にあることが分かります。
両者の統一的な表示とその関係性を一挙にまとめました。

計算確認は行っていますが、もしも間違いがあればご指摘下さい。

三角関数・双曲線関数

% カスタムコマンド定義
\newcommand{\sech}{\operatorname{sech}}
%\newcommand{\arsinh}{\operatorname{arsinh}}
\newcommand{\arcsin}{\sin^{-1}}
\newcommand{\arccos}{\cos^{-1}}
\newcommand{\arctan}{\tan^{-1}}
\newcommand{\arsinh}{\sinh^{-1}}
\newcommand{\arcosh}{\cosh^{-1}}
\newcommand{\artanh}{\tanh^{-1}}
\newcommand{\intz}[1]{\int #1 \, \mathrm{d}z}

\begin{align}
\sin z &= \frac{e^{iz} - e^{-iz}}{2i} \\
\cos z &= \frac{e^{iz} + e^{-iz}}{2} \\
\tan z &= \frac{1}{i} \left( 1 - \frac{2}{e^{2iz} + 1} \right) \\
\sinh z &= \frac{e^{z} - e^{-z}}{2} \\
\cosh z &= \frac{e^{z} + e^{-z}}{2} \\
\tanh z &= 1 - \frac{2}{e^{2z} + 1} \\
\end{align}

回転

\begin{align}
\sin iz &= i \sinh z \\
\cos iz &= \cosh z \\
\tan iz &= i \tanh z \\
\sinh iz &= i \sin z \\
\cosh iz &= \cos z \\
\tanh iz &= i \tan z \\
\end{align}
\begin{align}
\sin(-z) &= -\sin z \\
\cos(-z) &= \cos z \\
\tan(-z) &= -\tan z \\
\sinh(-z) &= -\sinh z \\
\cosh(-z) &= \cosh z \\
\tanh(-z) &= -\tanh z \\
\end{align}

90度シフト

\begin{align}
\sin\left( z + \frac{\pi}{2} \right) &= \cos z \\
\cos\left( z + \frac{\pi}{2} \right) &= -\sin z \\
\tan\left( z + \frac{\pi}{2} \right) &= -\cot z = -\frac{1}{\tan z} \\
\sinh\left( z + \frac{i\pi}{2} \right) &= i \cosh z \\
\cosh\left( z + \frac{i\pi}{2} \right) &= i \sinh z \\
\tanh\left( z + \frac{i\pi}{2} \right) &= i \coth z = \frac{i}{\tanh z}\\
\end{align}

180度シフト

\begin{align}
\sin\left( z + \pi \right) &= -\sin z \\
\cos\left( z + \pi \right) &= -\cos z \\
\tan\left( z + \pi \right) &= \tan z \\
\sinh\left( z + i\pi \right) &= -\sinh z \\
\cosh\left( z + i\pi \right) &= -\cosh z \\
\tanh\left( z + i\pi \right) &= \tanh z \\
\end{align}

加法定理

\begin{align}
\sin\left( z + w \right) &= \sin z \cos w + \cos z \sin w \\
\cos\left( z + w \right) &= \cos z \cos w - \sin z \sin w \\
\tan\left( z + w \right) &= \frac{\tan z + \tan w}{1 - \tan z \tan w} \\
\sinh\left( z + w \right) &= \sinh z \cosh w + \cosh z \sinh w \\
\cosh\left( z + w \right) &= \cosh z \cosh w + \sinh z \sinh w \\
\tanh\left( z + w \right) &= \frac{\tanh z + \tanh w}{1 + \tanh z \tanh w} \\
\end{align}

微分

\begin{align}
(\sin z)' &= \cos z \\
(\cos z)' &= -\sin z \\
(\tan z)' &= \sec^2 z = \frac{1}{\cos^2 z}\\
(\sinh z)' &= \cosh z \\
(\cosh z)' &= \sinh z \\
(\tanh z)' &= \sech^2 z = \frac{1}{\cosh^2 z} \\
\end{align}

積分

$C$ は積分定数。

\begin{align}
\intz{\sin z} &= -\cos z + C \\
\intz{\cos z} &= \sin z + C \\
\intz{\tan z} &= -\log(\cos z) + C \\
\intz{\sinh z} &= \cosh z + C \\
\intz{\cosh z} &= \sinh z + C \\
\intz{\tanh z} &= \log(\cosh z) + C \\
\end{align}

逆三角関数・逆双曲線関数

以下、主値を定めずに多価関数のまま扱います。

\begin{align}
\arcsin z &= -i \log\left( iz \pm \sqrt{1 - z^2} \right) \\
\arccos z &= -i \log\left( z \pm i \sqrt{1 - z^2} \right) \\
\arctan z &= \frac{1}{2i} \log{\frac{1+iz}{1-iz}} \\
\arsinh z &= \log\left( z \pm \sqrt{z^2 + 1} \right) \\
\arcosh z &= \log\left( z \pm \sqrt{z^2 - 1} \right) = i \arccos z \\
\artanh z &= \frac{1}{2} \log{\frac{1+z}{1-z}} \\
\end{align}

回転

\begin{align}
\arcsin iz &= i \arsinh z \\
\arctan iz &= i \artanh z \\
\arsinh iz &= i \arcsin z \\
\artanh iz &= i \arctan z \\
\end{align}
\begin{align}
\arcsin(-z) &= -\arcsin z \\
\arccos(-z) &= \pi - \arccos z \\
\arctan(-z) &= -\arctan z \\
\arsinh(-z) &= -\arsinh z \\
\arcosh(-z) &= i\pi - \arcosh z \\
\artanh(-z) &= -\artanh z \\
\end{align}

対称性

\begin{align}
\arcsin z &= \frac{\pi}{2} - \arccos z \\
\arccos z &= \frac{\pi}{2} - \arcsin z \\
\end{align}

微分

\begin{align}
(\arcsin z)' &= \pm \frac{1}{\sqrt{1 - z^2}} \\
(\arccos z)' &= \mp \frac{1}{\sqrt{1 - z^2}} \\
(\arctan z)' &= \frac{1}{z^2 + 1} \\
(\arsinh z)' &= \pm \frac{1}{\sqrt{z^2 + 1}} \\
(\arcosh z)' &= \pm \frac{1}{\sqrt{z^2 - 1}} \\
(\artanh z)' &= \frac{1}{1 - z^2} \\
\end{align}

積分

$C$ は積分定数。

\begin{align}
\intz{\arcsin z} &= z \arcsin z \pm \sqrt{1 - z^2} + C \\
\intz{\arccos z} &= z \arccos z \mp \sqrt{1 - z^2} + C \\
\intz{\arctan z} &= z \arctan z - \frac{1}{2} \log(z^2 + 1) + C \\
\intz{\arsinh z} &= z \arsinh z \mp \sqrt{z^2 + 1} + C \\
\intz{\arcosh z} &= z \arcosh z \mp \sqrt{z^2 - 1} + C \\
\intz{\artanh z} &= z \artanh z + \frac{1}{2} \log(1 - z^2) + C \\
\end{align}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?