0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Efficient-GAN-Based Anomaly Detectionを動かしてみた(備忘録)

Posted at

#目的
H.Zenati氏らのEfficient-GAN-Based Anomaly Detectionを実際に
動かしてみた
原著論文: https://arxiv.org/abs/1802.06222
Github: https://github.com/houssamzenati/Efficient-GAN-Anomaly-Detection

#作業内容
requirements.txt があるので、基本的にはcloneしてconda createしてpip installでよい

#Pythonライブラリのバージョン修正
requirements.txtにはライブラリのバージョン情報がないのでそのままインストールしても動かない。
そこで動いたライブラリ情報をメモしておく。

  • TensorFlow は1.x系
  • scikit-learnのバージョン情報で怒られる
  • 書かれていないがmatplotlibやpillowも必要(当然といえば当然)

#コマンドとyaml

conda env create -n "環境名" -f=egbad.yml
egbad.yml
name: EffGAN
channels:
  - defaults
dependencies:
  - blas=1.0=mkl
  - ca-certificates=2020.10.14=0
  - certifi=2020.6.20=pyhd3eb1b0_3
  - freetype=2.10.4=hd328e21_0
  - icu=58.2=ha925a31_3
  - intel-openmp=2020.2=254
  - jpeg=9b=hb83a4c4_2
  - libpng=1.6.37=h2a8f88b_0
  - libtiff=4.1.0=h56a325e_1
  - lz4-c=1.9.2=hf4a77e7_3
  - matplotlib=3.3.2=0
  - matplotlib-base=3.3.2=py36hba9282a_0
  - mkl=2020.2=256
  - mkl-service=2.3.0=py36hb782905_0
  - mkl_fft=1.2.0=py36h45dec08_0
  - mkl_random=1.1.1=py36h47e9c7a_0
  - numpy-base=1.19.2=py36ha3acd2a_0
  - olefile=0.46=py36_0
  - openssl=1.1.1h=he774522_0
  - pillow=8.0.1=py36h4fa10fc_0
  - pip=20.2.4=py36_0
  - pyparsing=2.4.7=py_0
  - pyqt=5.9.2=py36h6538335_2
  - python=3.6.12=h5500b2f_2
  - python-dateutil=2.8.1=py_0
  - qt=5.9.7=vc14h73c81de_0
  - setuptools=50.3.0=py36h9490d1a_1
  - sip=4.19.8=py36h6538335_0
  - six=1.15.0=py_0
  - sqlite=3.33.0=h2a8f88b_0
  - tk=8.6.10=he774522_0
  - tornado=6.0.4=py36he774522_1
  - vc=14.1=h0510ff6_4
  - vs2015_runtime=14.16.27012=hf0eaf9b_3
  - wheel=0.35.1=py_0
  - wincertstore=0.2=py36h7fe50ca_0
  - xz=5.2.5=h62dcd97_0
  - zlib=1.2.11=h62dcd97_4
  - zstd=1.4.5=h04227a9_0
  - pip:
    - absl-py==0.11.0
    - astor==0.8.1
    - astunparse==1.6.3
    - cachetools==4.1.1
    - chardet==3.0.4
    - cycler==0.10.0
    - cython==0.29.14
    - gast==0.2.2
    - gensim==3.8.3
    - google-auth==1.23.0
    - google-auth-oauthlib==0.4.2
    - google-pasta==0.2.0
    - grpcio==1.33.2
    - h5py==2.10.0
    - idna==2.10
    - importlib-metadata==2.0.0
    - joblib==0.17.0
    - keras==2.4.3
    - keras-applications==1.0.8
    - keras-preprocessing==1.1.2
    - kiwisolver==1.2.0
    - markdown==3.3.3
    - numpy==1.19.4
    - oauthlib==3.1.0
    - opt-einsum==3.3.0
    - protobuf==3.13.0
    - pyasn1==0.4.8
    - pyasn1-modules==0.2.8
    - pyyaml==5.3.1
    - regex==2020.10.28
    - requests==2.24.0
    - requests-oauthlib==1.3.0
    - rsa==4.6
    - scikit-learn==0.23.2
    - scipy==1.5.4
    - smart-open==3.0.0
    - tensorboard==1.15.0
    - tensorboard-plugin-wit==1.7.0
    - tensorflow-estimator==1.15.1
    - tensorflow-gpu==1.15.0
    - tensorflow-gpu-estimator==2.3.0
    - termcolor==1.1.0
    - threadpoolctl==2.1.0
    - urllib3==1.25.11
    - werkzeug==1.0.1
    - wrapt==1.12.1
    - zipp==3.4.0
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?