0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

SnowflakeでPythonワークシート作成②

Last updated at Posted at 2023-07-02
python worksheet
# The Snowpark package is required for Python Worksheets. 
# You can add more packages by selecting them using the Packages control and then importing them.

import snowflake.snowpark as snowpark
from snowflake.snowpark.functions import col


def distribution(session: snowpark.Session):
    tableName = 'signate.data.train_230624'
    df_sn = session.table(tableName)
    return df_sn # Table()型

def describe(session: snowpark.Session):
    tableName = 'signate.data.train_230624'
    df_sn = session.table(tableName)
    return df_sn.describe() # Table()型
    
def plot(session: snowpark.Session):
    session.add_packages('matplotlib')
    tableName = 'signate.data.train_230624'
    df_sn = session.table(tableName)
    df = snowpark.DataFrame.to_pandas(df_sn)
    df["AGE"].plot.hist()
    return df_sn # Table()型
    
    
def main(session: snowpark.Session): 
    # Your code goes here, inside the "main" handler.
    tableName = 'signate.data.train_230624'
    df_sn = session.table(tableName)

    df = snowpark.DataFrame.to_pandas(df_sn)
    df.columns = [x.upper() for x in df.columns]
    df = df.replace({'DEFAULT': {'yes':1, 'no':0 }})
    df = df.replace({'HOUSING': {'yes':1, 'no':0 }})
    df = df.replace({'LOAN': {'yes':1, 'no':0 }})    
    
    session.write_pandas(df, "TRAIN", database="SIGNATE", schema="DATA", overwrite=True)
    df_sn = session.table("signate.data.train")
   #df_sn.write.mode("overwrite").saveAsTable("signate.data.train")
    df_sn.show()
    
    # Return value will appear in the Results tab.
    return df_sn
python worksheet
# The Snowpark package is required for Python Worksheets. 
# You can add more packages by selecting them using the Packages control and then importing them.

# Anacondaを使う場合はAnacondaの有効化が必要
# 有効化していないでto_pandasとかするとエラーが出る(pyarrowないよ、みたいな)

import snowflake.snowpark as snowpark
from snowflake.snowpark.functions import col

def main(session: snowpark.Session): 
    # Your code goes here, inside the "main" handler.
    tableName = 'train'
    df = session.table(tableName)
    # Print a sample of the dataframe to standard output.

    print("### conf whether pyarrow is installed ###")
    tableName = 'information_schema.packages'
    dataframe = session.table(tableName).filter(col("language") == 'python')
    dataframe.filter(col("PACKAGE_NAME")=="pyarrow").show()
    
    print("### describe ###")
    df.describe().show()
    
    print("\n### count ###")   
    print(df.count())
    
    print("\n### sample ###")   
    df.sample(n=3).show()
    
    print("\n### explain ###")
    print(df.explain())
    
    print("\n### first ###")
    [print(s) for s in df.first(3)]

    print("\n### show ###")
    print(df.show(3))

    print("\n### col ###")
    print(df.select(col("job")).collect())

    # pandasからsnowflake table
    df[["ID","JOB","BALANCE"]].sample(n=3).write.mode("overwrite").save_as_table("my_table", table_type="temporary")
    session.table("my_table").collect()
    
    print("\n### to_pandas ###")
    df_pd = snowpark.DataFrame.to_pandas(df)
    print(df_pd)
    print("\n")
    print(df_pd.shape)
    print("\n")
    print(df_pd["JOB"].value_counts())
    print("\n")
    print(df_pd.info())
    print("\n")
    print(df_pd.isnull().sum())

    import pandas as pd
    pd.set_option("display.max_columns",100)
    pd.set_option("display.max_rows",100)

    print(df_pd.corr(numeric_only='True'))

    # pandasからsnowflake table(相関係数TBLを作ってHeatmap表示したかったんだけど…)
    import numpy as np
    corr_index = df_pd.select_dtypes(include=np.number).columns
    df_corr = df_pd.corr(numeric_only='True')
    df_corr["index"] = corr_index
    
    df2 = session.create_dataframe(df_corr)
    df2.write.mode("overwrite").save_as_table("corr_table", table_type="temporary")
    session.table("corr_table").collect()
    
    #session.write_pandas(df, "TRAIN", database="SIGNATE", schema="DATA", overwrite=True)
    #df_sn.write.mode("overwrite").saveAsTable("signate.data.train")

    print("\n### before matplotlib ###")
    #import os 
    #os.environ['MPLCONFIGDIR'] = os.getcwd() + "/configs/"
    #import matplotlib as mpl
    import matplotlib.pyplot as plt
    #print(mpl.get_configdir())
    #print(mpl.matplotlib_fname())
    print("\n### matplotlib result ###")
    plt.plot(df_pd["Y"])
    plt.show()

    use_columns = ['DURATION', 'PDAYS', 'PREVIOUS', 'JOB', 'EDUCATION', 'MARITAL','DEFAULT', 'HOUSING','LOAN']
    y = df_pd['Y']    
    train = df_pd[use_columns]    

    # pdaysは-1とそれ以外で分ける
    train.loc[train['PDAYS']>=0, 'PDAYS'] = 1 
    train.loc[~train['PDAYS']>=0, 'PDAYS'] = 0
    # previousは0とそれ以外で分ける
    train.loc[train['PREVIOUS']!=0, 'PREVIOUS'] = 1
    #カテゴリ変数のダミー変数化
    train = pd.get_dummies(train, drop_first=True)
    #test = pd.get_dummies(test, drop_first=True)
    
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score, roc_auc_score, roc_curve, confusion_matrix
    from sklearn.preprocessing import StandardScaler
    ss = StandardScaler()
    train_ss = pd.DataFrame(ss.fit_transform(train), columns=train.columns)
    
    # Return value will appear in the Results tab.
    return df2

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?