LoginSignup
1
0

More than 3 years have passed since last update.

Prolog でわかる TAPL 9日目 - 第Ⅴ部 多相性 (1)

Last updated at Posted at 2019-12-07

ルーナ像。
ルーナ(ラテン語:Lūna)は、ローマ神話に登場する月の女神[1]であり、その名は月を意味するラテン語に由来する。日本語では長母音を省略し、ルナともいう[2]。

神殿はローマ市内にあったが、早いうちからディアーナと同一視されてしまい、独自の神話は持たなかった[1]。後にギリシア神話のセレーネーと同一視された[1]。

今日は、型再構築、いわゆる型推論を見ます。reconbaseは単純型の型再構築のベースとなるプログラム。
reconが型推論、fullreconはフルセットの言語の型推論をしています。

実装

  • reconbase 型再構築のベース bool+nat+λ+単純型(22章)
  • recon 型再構築 bool+nat+λ+型推論(22章)
  • fullrecon フル型再構築 bool+nat+λ+let+型推論(22章)

reconbase.pl

型再構築をするベースとなるプログラムです。

reconbase.pl
:- discontiguous((/-)/2).
:- op(920, xfx, [==>, ==>>, <:]).
:- op(910, xfx, [/-]).
:- op(500, yfx, [$, !, subst, subst2]).
:- style_check(- singleton). 

% ------------------------   SYNTAX  ------------------------

:- use_module(rtg).

w ::= bool | nat | true | false. % キーワード:

syntax(x). x(X) :- \+ w(X), atom(X), sub_atom(X, 0, 1, _, P), (char_type(P, lower) ; P = '_').  % 識別子:
syntax(tx). tx(TX) :- atom(TX), sub_atom(TX, 0, 1, _, P), char_type(P, upper). % 型変数:

t ::=                  % 型:
      bool             % ブール値型
    | nat              % 自然数型
    | tx               % 型変数
    | (t -> t)         % 関数の型
    .
m ::=                  % 項:
      true             % 真
    | false            % 偽
    | if(m, m, m)      % 条件式
    | 0                % ゼロ
    | succ(m)          % 後者値
    | pred(m)          % 前者値
    | iszero(m)        % ゼロ判定
    | x                % 変数
    | (fn(x : t) -> m) % ラムダ抽象
    | m $ m            % 関数適用
    .
n ::=                  % 数値:
      0                % ゼロ
    | succ(n)          % 後者値
    .
v ::=                  % 値:
      true             % 真
    | false            % 偽
    | n                % 数値
    | (fn(x : t) -> m) % ラムダ抽象
    . 

% ------------------------   SUBSTITUTION  ------------------------

true![(J -> M)] subst true.
false![(J -> M)] subst false.
if(M1, M2, M3)![(J -> M)] subst if(M1_, M2_, M3_)         :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_,
                                                             M3![(J -> M)] subst M3_.
0![(J -> M)] subst 0.
succ(M1)![(J -> M)] subst succ(M1_)                       :- M1![(J -> M)] subst M1_.
pred(M1)![(J -> M)] subst pred(M1_)                       :- M1![(J -> M)] subst M1_.
iszero(M1)![(J -> M)] subst iszero(M1_)                   :- M1![(J -> M)] subst M1_.
J![(J -> M)] subst M                                      :- x(J).
X![(J -> M)] subst X                                      :- x(X).
(fn(X1 : T1) -> M2)![(J -> M)] subst (fn(X1 : T1) -> M2_) :- M2![X1, (J -> M)] subst2 M2_.
M1 $ M2![(J -> M)] subst (M1_ $ M2_)                      :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_. 
T![X, (X -> M)] subst2 T.
T![X, (J -> M)] subst2 T_                                 :- T![(J -> M)] subst T_.

% ------------------------   EVALUATION  ------------------------

Γ /- if(true, M2, _) ==> M2.
Γ /- if(false, _, M3) ==> M3.
Γ /- if(M1, M2, M3) ==> if(M1_, M2, M3) :- Γ /- M1 ==> M1_.
Γ /- succ(M1) ==> succ(M1_)             :- Γ /- M1 ==> M1_.
Γ /- pred(0) ==> 0.
Γ /- pred(succ(N1)) ==> N1              :- n(N1).
Γ /- pred(M1) ==> pred(M1_)             :- Γ /- M1 ==> M1_.
Γ /- iszero(0) ==> true.
Γ /- iszero(succ(N1)) ==> false         :- n(N1).
Γ /- iszero(M1) ==> iszero(M1_)         :- Γ /- M1 ==> M1_.
Γ /- (fn(X : T11) -> M12) $ V2 ==> R    :- v(V2), M12![(X -> V2)] subst R.
Γ /- V1 $ M2 ==> V1 $ M2_               :- v(V1), Γ /- M2 ==> M2_.
Γ /- M1 $ M2 ==> M1_ $ M2               :- Γ /- M1 ==> M1_. 

Γ /- M ==>> M_ :- Γ /- M ==> M1, Γ /- M1 ==>> M_.
Γ /- M ==>> M. 

% ------------------------   TYPING  ------------------------

Γ /- true : bool.
Γ /- false : bool.
Γ /- if(M1, M2, M3) : T2              :- Γ /- M1 : bool, Γ /- M2 : T2, Γ /- M3 : T2.
Γ /- 0 : nat.
Γ /- succ(M1) : nat                   :- Γ /- M1 : nat.
Γ /- pred(M1) : nat                   :- Γ /- M1 : nat.
Γ /- iszero(M1) : bool                :- Γ /- M1 : nat.
Γ /- X : T                            :- x(X), member(X:T, Γ).
Γ /- (fn(X : T1) -> M2) : (T1 -> T2_) :- [X:T1|Γ] /- M2 : T2_.
Γ /- M1 $ M2 : T12                    :- Γ /- M1 : (T11 -> T12), Γ /- M2 : T11. 
% ------------------------   MAIN  ------------------------

show(X : T) :- format('~w : ~w\n', [X, T]).

run(X : T, Γ, [X:T|Γ]) :- x(X), t(T), show(X : T).
run(M, Γ, Γ)           :- m(M), !, Γ /- M ==>> M_, !, Γ /- M_ : T, !, writeln(M_ : T).

run(Ls) :- foldl(run, Ls, [], _). 

% ------------------------   TEST  ------------------------

% lambda x:A. x;
:- run([(fn(x : 'A') -> x)]). 
% lambda x:Bool. x;
:- run([(fn(x : bool) -> x)]). 
% (lambda x:Bool->Bool. if x false then true else false)
%   (lambda x:Bool. if x then false else true); 
:- run([(fn(x : (bool -> bool)) -> if(x $ false, true, false)) $
           (fn(x : bool) -> if(x, false, true))]).  
% lambda x:Nat. succ x;
:- run([(fn(x : nat) -> succ(x))]). 
% (lambda x:Nat. succ (succ x)) (succ 0); 
:- run([(fn(x : nat) -> succ(succ(x))) $ succ(0)]).

:- halt.

プログラムの全体を見る

recon.pl

reconbaseを元に型推論するようにしたものです。

プログラムの全体を見る
recon.pl
:- discontiguous((/-)/2).
:- op(920, xfx, [==>, ==>>, <:]).
:- op(910, xfx, [/-]).
:- op(500, yfx, [$, !, subst, subst2]).
:- style_check(- singleton). 

% ------------------------   SYNTAX  ------------------------

:- use_module(rtg).

w ::= bool | nat | true | false | 0.  % キーワード:
syntax(x). x(X) :- \+ w(X), atom(X), sub_atom(X, 0, 1, _, P), (char_type(P, lower) ; P = '_'). % 識別子:
syntax(tx). tx(TX) :- atom(TX), sub_atom(TX, 0, 1, _, P), (char_type(P, upper) ; P = '?'). % 型変数:
option(M) ::= none | some(M).  % オプション:

t ::=                          % 型:
      bool                     % ブール値型
    | nat                      % 自然数型
    | tx                       % 型変数
    | (t -> t)                 % 関数の型
    .
m ::=                          % 項:
      true                     % 真
    | false                    % 偽
    | if(m, m, m)              % 条件式
    | 0                        % ゼロ
    | succ(m)                  % 後者値
    | pred(m)                  % 前者値
    | iszero(m)                % ゼロ判定
    | x                        % 変数
    | (fn(x : option(t)) -> m) % ラムダ抽象
    | m $ m                    % 関数適用
    .
n ::=                          % 数値:
      0                        % ゼロ
    | succ(n)                  % 後者値
    .
v ::=                          % 値:
      true                     % 真
    | false                    % 偽
    | n                        % 数値
    | (fn(x : option(t)) -> m) % ラムダ抽象
    . 

% ------------------------   SUBSTITUTION  ------------------------

true![(J -> M)] subst true.
false![(J -> M)] subst false.
if(M1, M2, M3)![(J -> M)] subst if(M1_, M2_, M3_)         :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_,
                                                             M3![(J -> M)] subst M3_.
0![(J -> M)] subst 0.
succ(M1)![(J -> M)] subst succ(M1_)                       :- M1![(J -> M)] subst M1_.
pred(M1)![(J -> M)] subst pred(M1_)                       :- M1![(J -> M)] subst M1_.
iszero(M1)![(J -> M)] subst iszero(M1_)                   :- M1![(J -> M)] subst M1_.
J![(J -> M)] subst M                                      :- x(J).
X![(J -> M)] subst X                                      :- x(X).
(fn(X1 : T1) -> M2)![(J -> M)] subst (fn(X1 : T1) -> M2_) :- M2![X1, (J -> M)] subst2 M2_.
M1 $ M2![(J -> M)] subst (M1_ $ M2_)                      :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_. 
T![X, (X -> M)] subst2 T.
T![X, (J -> M)] subst2 T_                                 :- T![(J -> M)] subst T_.

% ------------------------   EVALUATION  ------------------------

Γ /- if(true, M2, _) ==> M2.
Γ /- if(false, _, M3) ==> M3.
Γ /- if(M1, M2, M3) ==> if(M1_, M2, M3) :- Γ /- M1 ==> M1_.
Γ /- succ(M1) ==> succ(M1_)             :- Γ /- M1 ==> M1_.
Γ /- pred(0) ==> 0.
Γ /- pred(succ(N1)) ==> N1              :- n(N1).
Γ /- pred(M1) ==> pred(M1_)             :- Γ /- M1 ==> M1_.
Γ /- iszero(0) ==> true.
Γ /- iszero(succ(N1)) ==> false         :- n(N1).
Γ /- iszero(M1) ==> iszero(M1_)         :- Γ /- M1 ==> M1_.
Γ /- (fn(X : T11) -> M12) $ V2 ==> R    :- v(V2), M12![(X -> V2)] subst R.
Γ /- V1 $ M2 ==> V1 $ M2_               :- v(V1), Γ /- M2 ==> M2_.
Γ /- M1 $ M2 ==> M1_ $ M2               :- Γ /- M1 ==> M1_. 

Γ /- M ==>> M_ :- Γ /- M ==> M1, Γ /- M1 ==>> M_.
Γ /- M ==>> M. 

% ------------------------   TYPING  ------------------------

nextuvar(I, A, I_) :- swritef(S, '?X%d', [I]), atom_string(A, S), I_ is I + 1.

recon(Γ, Cnt, X, T, Cnt, [])                             :- x(X), member(X:T, Γ).
recon(Γ, Cnt, (fn(X : some(T1)) -> M2), (T1 -> T2), Cnt_, Constr_)
                                                         :- recon([X:T1|Γ], Cnt, M2, T2, Cnt_, Constr_).
recon(Γ, Cnt, M1 $ M2, TX, Cnt_, Constr_)                :- recon(Γ, Cnt, M1, T1, Cnt1, Constr1),
                                                            recon(Γ, Cnt1, M2, T2, Cnt2, Constr2),
                                                            nextuvar(Cnt2, TX, Cnt_),
                                                            flatten([[T1 - (T2 -> TX)], Constr1, Constr2], Constr_).
recon(Γ, Cnt, 0, nat, Cnt, []).
recon(Γ, Cnt, succ(M1), nat, Cnt1, [T1 - nat | Constr1]) :- recon(Γ, Cnt, M1, T1, Cnt1, Constr1).
recon(Γ, Cnt, pred(M1), nat, Cnt1, [T1 - nat | Constr1]) :- recon(Γ, Cnt, M1, T1, Cnt1, Constr1).
recon(Γ, Cnt, iszero(M1), bool, Cnt1, [T1 - nat | Constr1])
                                                         :- recon(Γ, Cnt, M1, T1, Cnt1, Constr1).
recon(Γ, Cnt, true, bool, Cnt, []).
recon(Γ, Cnt, false, bool, Cnt, []).
recon(Γ, Cnt, if(M1, M2, M3), T1, Cnt3, Constr)          :- recon(Γ, Cnt, M1, T1, Cnt1, Constr1),
                                                            recon(Γ, Cnt1, M2, T2, Cnt2, Constr2),
                                                            recon(Γ, Cnt2, M3, T3, Cnt3, Constr3),
                                                            flatten([[T1 - bool, T2 - T3], Constr1, Constr2, Constr3], Constr).
recon(Γ, Cnt, V, V2, Cnt_, [])                           :- writeln(error : recon((V ; V2))), fail.

substinty(TX, T, (S1 -> S2), (S1_ -> S2_)) :- substinty(TX, T, S1, S1_), substinty(TX, T, S2, S2_).
substinty(TX, T, nat, nat).
substinty(TX, T, bool, bool).
substinty(TX, T, TX, T)                    :- tx(TX).
substinty(TX, T, S, S)                     :- tx(S).
substinty(TX, T, S, S1)                    :- writeln(error : substinty(TX, T, S, S1)), fail.

applysubst(Constr, T, T_)                  :- reverse(Constr, Constrr), foldl(applysubst1, Constrr, T, T_).
applysubst1(Tx - Tc2, S, S_)               :- tx(Tx), substinty(Tx, Tc2, S, S_).

substinconstr(Tx, T, Constr, Constr_)      :- maplist([S1 - S2, S1_ - S2_] >> (substinty(Tx, T, S1, S1_),
                                              substinty(Tx, T, S2, S2_)), Constr, Constr_).

occursin(Tx, (T1 -> T2)) :- occursin(Tx, T1).
occursin(Tx, (T1 -> T2)) :- occursin(Tx, T2).
occursin(Tx, Tx)         :- tx(Tx).

unify(Γ, [], []).
unify(Γ, [Tx - Tx | Rest], Rest_)                 :- tx(Tx), unify(Γ, Rest, Rest_).
unify(Γ, [S - Tx | Rest], Rest_)                  :- tx(Tx), !, \+ occursin(Tx, S), substinconstr(Tx, S, Rest, Rest1), unify(Γ, Rest1, Rest2), append(Rest2, [Tx - S], Rest_).
unify(Γ, [Tx - S | Rest], Rest_)                  :- tx(Tx), unify(Γ, [S - Tx | Rest], Rest_).
unify(Γ, [nat - nat | Rest], Rest_)               :- unify(Γ, Rest, Rest_).
unify(Γ, [bool - bool | Rest], Rest_)             :- unify(Γ, Rest, Rest_).
unify(Γ, [(S1 -> S2) - (T1 -> T2) | Rest], Rest_) :- unify(Γ, [S1 - T1, S2 - T2 | Rest], Rest_).
unify(_, A, B)                                    :- writeln(error : unify : A), fail.

typeof(Γ, Cnt, Constr, M, T_, Cnt_, Constr3) :- recon(Γ, Cnt, M, T, Cnt_, Constr1), !,
                                                   append(Constr, Constr1, Constr2), !,
                                                   unify(Γ, Constr2, Constr3), !,
                                                   applysubst(Constr3, T, T_). 

% ------------------------   MAIN  ------------------------

show(X : T) :- format('~w : ~w\n', [X, T]).

run(X : T, Γ, [X : T | Γ])             :- x(X), t(T), show(X : T).
run(M, (Γ, Cnt, Constr), (Γ, Cnt_, Constr_)) :- !, m(M), !, typeof(Γ, Cnt, Constr, M, T, Cnt_, Constr_), !,
                                                Γ /- M ==>> M_, !, writeln(M_ : T).

run(Ls) :- foldl(run, Ls, ([], 0, []), _). 

% ------------------------   TEST  ------------------------

% lambda x:Bool. x;
:- run([(fn(x : some(bool)) -> x)]). 
% if true then false else true;
:- run([if(true, false, true)]). 
% if true then 1 else 0;
:- run([if(true, succ(0), 0)]). 
% (lambda x:Nat. x) 0;
:- run([(fn(x : some(nat)) -> x) $ 0]). 
% (lambda x:Bool->Bool. if x false then true else false) 
%   (lambda x:Bool. if x then false else true); 
:- run([(fn(x : some((bool -> bool))) -> if(x $ false, true, false)) $
           (fn(x : some(bool)) -> if(x, false, true))]). 
% lambda x:Nat. succ x;
:- run([(fn(x : some(nat)) -> succ(x))]). 
% (lambda x:Nat. succ (succ x)) (succ 0);
:- run([(fn(x : some(nat)) -> succ(succ(x))) $ succ(0)]). 
% lambda x:A. x;
:- run([(fn(x : some('A')) -> x)]). 
% (lambda x:X. lambda y:X->X. y x);
:- run([(fn(x : some('X')) -> fn(y : some(('X' -> 'X'))) -> y $ x)]). 
% (lambda x:X->X. x 0) (lambda y:Nat. y);
:- run([(fn(x : some(('X' -> 'X'))) -> x $ 0) $ (fn(y : some(nat)) -> y)]).

:- halt.

fullrecon.pl

fullreconはフルセットの言語の型推論をしています。

プログラムの全体を見る
fullrecon.pl
:- discontiguous((/-)/2).
:- op(1100, xfy, [in]).
:- op(920, xfx, [==>, ==>>]).
:- op(910, xfx, [/-]).
:- op(500, yfx, [$, !, subst, subst2]).
:- style_check(- singleton). 

% ------------------------   SYNTAX  ------------------------

:- use_module(rtg).

w ::= bool | nat | true | false | 0.  % キーワード:
syntax(x). x(X) :- \+ w(X), atom(X), sub_atom(X, 0, 1, _, P), (char_type(P, lower) ; P = '_'). % 識別子:
syntax(tx). tx(TX) :- atom(TX), sub_atom(TX, 0, 1, _, P), (char_type(P, upper) ; P = '?'). % 型変数:
option(M) ::= none | some(M).  % オプション:

t ::=                          % 型:
      bool                     % ブール値型
    | nat                      % 自然数型
    | tx                       % 型変数
    | (t -> t)                 % 関数の型
    .
m ::=                          % 項:
      true                     % 真
    | false                    % 偽
    | if(m, m, m)              % 条件式
    | 0                        % ゼロ
    | succ(m)                  % 後者値
    | pred(m)                  % 前者値
    | iszero(m)                % ゼロ判定
    | x                        % 変数
    | (fn(x : option(t)) -> m) % ラムダ抽象
    | m $ m                    % 関数適用
    .
n ::=                          % 数値:
      0                        % ゼロ
    | succ(n)                  % 後者値
    .
v ::=                          % 値:
      true                     % 真
    | false                    % 偽
    | n                        % 数値
    | (fn(x : option(t)) -> m) % ラムダ抽象
    . 

% ------------------------   SUBSTITUTION  ------------------------

true![(J -> M)] subst true.
false![(J -> M)] subst false.
if(M1, M2, M3)![(J -> M)] subst if(M1_, M2_, M3_)          :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_, M3![(J -> M)] subst M3_.
0![(J -> M)] subst 0.
succ(M1)![(J -> M)] subst succ(M1_)                        :- M1![(J -> M)] subst M1_.
pred(M1)![(J -> M)] subst pred(M1_)                        :- M1![(J -> M)] subst M1_.
iszero(M1)![(J -> M)] subst iszero(M1_)                    :- M1![(J -> M)] subst M1_.
J![(J -> M)] subst M                                       :- x(J).
X![(J -> M)] subst X                                       :- x(X).
(fn(X : T1) -> M2)![(J -> M)] subst (fn(X : T1) -> M2_)    :- M2![X, (J -> M)] subst2 M2_.
M1 $ M2![(J -> M)] subst (M1_ $ M2_)                       :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_.
(let(X) = M1 in M2)![(J -> M)] subst (let(X) = M1_ in M2_) :- M1![(J -> M)] subst M1_, M2![X, (J -> M)] subst2 M2_.
S![J, (J -> M)] subst2 S.
S![X, (J -> M)] subst2 M_                                  :- S![(J -> M)] subst M_.

% ------------------------   EVALUATION  ------------------------

Γ /- if(true, M2, _) ==> M2.
Γ /- if(false, _, M3) ==> M3.
Γ /- if(M1, M2, M3) ==> if(M1_, M2, M3)           :- Γ /- M1 ==> M1_.
Γ /- succ(M1) ==> succ(M1_)                       :- Γ /- M1 ==> M1_.
Γ /- pred(0) ==> 0.
Γ /- pred(succ(N1)) ==> N1                        :- n(N1).
Γ /- pred(M1) ==> pred(M1_)                       :- Γ /- M1 ==> M1_.
Γ /- iszero(0) ==> true.
Γ /- iszero(succ(N1)) ==> false                   :- n(N1).
Γ /- iszero(M1) ==> iszero(M1_)                   :- Γ /- M1 ==> M1_.
Γ /- (fn(X : _) -> M12) $ V2 ==> R                :- v(V2), M12![(X -> V2)] subst R.
Γ /- V1 $ M2 ==> V1 $ M2_                         :- v(V1), Γ /- M2 ==> M2_.
Γ /- M1 $ M2 ==> M1_ $ M2                         :- Γ /- M1 ==> M1_.
Γ /- (let(X) = V1 in M2) ==> M2_                  :- v(V1), M2![(X -> V1)] subst M2_.
Γ /- (let(X) = M1 in M2) ==> (let(X) = M1_ in M2) :- Γ /- M1 ==> M1_.

Γ /- M ==>> M_ :- Γ /- M ==> M1, Γ /- M1 ==>> M_.
Γ /- M ==>> M. 

% ------------------------   TYPING  ------------------------

nextuvar(I, A, I_) :- swritef(S, '?X%d', [I]), atom_string(A, S), I_ is I + 1. 

recon(Γ, Cnt, X, T, Cnt, [])                             :- x(X), member(X:T, Γ).
recon(Γ, Cnt, (fn(X : some(T1)) -> M2), (T1 -> T2), Cnt_, Constr_)
                                                         :- recon([X:T1|Γ], Cnt, M2, T2, Cnt_, Constr_).
recon(Γ, Cnt, (fn(X : none) -> M2), (U -> T2), Cnt2, Constr2)
                                                         :- nextuvar(Cnt, U, Cnt_), recon([X:U|Γ], Cnt_, M2, T2, Cnt2, Constr2).
recon(Γ, Cnt, M1 $ M2, TX, Cnt_, Constr_)                :- recon(Γ, Cnt, M1, T1, Cnt1, Constr1),
                                                            recon(Γ, Cnt1, M2, T2, Cnt2, Constr2),
                                                            nextuvar(Cnt2, TX, Cnt_),
                                                            flatten([[T1 - (T2 -> TX)], Constr1, Constr2], Constr_).
recon(Γ, Cnt, (let(X) = M1 in M2), T_, Cnt_, Constr_)    :- v(M1), M2![(X -> M1)] subst M2_,
                                                            recon(Γ, Cnt, M2_, T_, Cnt_, Constr_).
recon(Γ, Cnt, (let(X) = M1 in M2), T2, Cnt2, Constr_)    :- recon(Γ, Cnt, M1, T1, Cn1, Constr1),
                                                            recon([X:T1|Γ], Cnt1, M2, T2, Cnt2, Constr2),
                                                            flatten([Constr1, Constr2], Constr_).
recon(Γ, Cnt, 0, nat, Cnt, []).
recon(Γ, Cnt, succ(M1), nat, Cnt1, [T1 - nat | Constr1]) :- recon(Γ, Cnt, M1, T1, Cnt1, Constr1).
recon(Γ, Cnt, pred(M1), nat, Cnt1, [T1 - nat | Constr1]) :- recon(Γ, Cnt, M1, T1, Cnt1, Constr1).
recon(Γ, Cnt, iszero(M1), bool, Cnt1, [T1 - nat | Constr1])
                                                         :- recon(Γ, Cnt, M1, T1, Cnt1, Constr1).
recon(Γ, Cnt, true, bool, Cnt, []).
recon(Γ, Cnt, false, bool, Cnt, []).
recon(Γ, Cnt, if(M1, M2, M3), T1, Cnt3, Constr)          :- recon(Γ, Cnt, M1, T1, Cnt1, Constr1),
                                                            recon(Γ, Cnt1, M2, T2, Cnt2, Constr2),
                                                            recon(Γ, Cnt2, M3, T3, Cnt3, Constr3),
                                                            flatten([[T1 - bool, T2 - T3], Constr1, Constr2, Constr3], Constr).

substinty(TX, T, (S1 -> S2), (S1_ -> S2_)) :- substinty(TX, T, S1, S1_), substinty(TX, T, S2, S2_).
substinty(TX, T, nat, nat).
substinty(TX, T, bool, bool).
substinty(TX, T, TX, T)                    :- tx(TX).
substinty(TX, T, S, S)                     :- tx(S).
applysubst(Constr, T, T_)                  :- reverse(Constr, Constrr), foldl(applysubst1, Constrr, T, T_).
applysubst1(Tx - Tc2, S, S_)               :- tx(Tx), substinty(Tx, Tc2, S, S_).

substinconstr(Tx, T, Constr, Constr_) :- maplist([S1 - S2, S1_ - S2_] >> (
                                           substinty(Tx, T, S1, S1_),
                                           substinty(Tx, T, S2, S2_)
                                         ), Constr, Constr_).

occursin(Tx, (T1 -> T2)) :- occursin(Tx, T1).
occursin(Tx, (T1 -> T2)) :- occursin(Tx, T2).
occursin(Tx, Tx) :- tx(Tx). 

unify(Γ, [], []).
unify(Γ, [Tx - Tx | Rest], Rest_)                 :- tx(Tx), unify(Γ, Rest, Rest_).
unify(Γ, [S - Tx | Rest], Rest_)                  :- tx(Tx), !, \+ occursin(Tx, S),
                                                     substinconstr(Tx, S, Rest, Rest1), unify(Γ, Rest1, Rest2),
                                                     append(Rest2, [Tx - S], Rest_).
unify(Γ, [Tx - S | Rest], Rest_)                  :- tx(Tx), unify(Γ, [S - Tx | Rest], Rest_).
unify(Γ, [nat - nat | Rest], Rest_)               :- unify(Γ, Rest, Rest_).
unify(Γ, [bool - bool | Rest], Rest_)             :- unify(Γ, Rest, Rest_).
unify(Γ, [(S1 -> S2) - (T1 -> T2) | Rest], Rest_) :- unify(Γ, [S1 - T1, S2 - T2 | Rest], Rest_).

typeof(Γ, Cnt, Constr, M, T_, Cnt_, Constr3) :- recon(Γ, Cnt, M, T, Cnt_, Constr1), !,
                                                   append(Constr, Constr1, Constr2), !,
                                                   unify(Γ, Constr2, Constr3), !,
                                                   applysubst(Constr3, T, T_). 

% ------------------------   MAIN  ------------------------

show(X : T) :- format('~w : ~w\n', [X, T]).

run(X : T, (Γ, Cnt, Constr), ([X:X|Γ], Cnt, Constr))
                                             :- x(X), t(T), show(X : T).
run(M, (Γ, Cnt, Constr), (Γ, Cnt_, Constr_)) :- !, m(M), !, typeof(Γ, Cnt, Constr, M, T, Cnt_, Constr_), !,
                                                Γ /- M ==>> M_, !, writeln(M_ : T).

run(Ls) :- foldl(run, Ls, ([], 0, []), _). 

% ------------------------   TEST  ------------------------

% lambda x:Bool. x;
:- run([(fn(x : some(bool)) -> x)]). 
% if true then false else true;
:- run([if(true, false, true)]). 
% if true then 1 else 0;
:- run([if(true, succ(0), 0)]). 
% (lambda x:Nat. x) 0;
:- run([(fn(x : some(nat)) -> x) $ 0]). 
% (lambda x:Bool->Bool. if x false then true else false) 
%   (lambda x:Bool. if x then false else true); 
:- run([(fn(x : some((bool -> bool))) -> if(x $ false, true, false)) $
           (fn(x : some(bool)) -> if(x, false, true))]). 
% lambda x:Nat. succ x;
:- run([(fn(x : some(nat)) -> succ(x))]). 
% (lambda x:Nat. succ (succ x)) (succ 0);
:- run([(fn(x : some(nat)) -> succ(succ(x))) $ succ(0)]). 
% lambda x:A. x;
:- run([(fn(x : some('A')) -> x)]). 
% (lambda x:X. lambda y:X->X. y x);
:- run([(fn(x : some('X')) -> fn(y : some(('X' -> 'X'))) -> y $ x)]).
:- halt. 
% (lambda x:X->X. x 0) (lambda y:Nat. y);
:- run([(fn(x : some(('X' -> 'X'))) -> x $ 0) $ (fn(y : some(nat)) -> y)]). 
% (lambda x. x 0);
:- run([(fn(x : none) -> x $ 0)]). 
% let f = lambda x. x in (f 0);
:- run([(let(f) = (fn(x : none) -> x) in f $ 0)]). 
% let f = lambda x. x in (f f) (f 0);
:- run([(let(f) = (fn(x : none) -> x) in f $ f $ (f $ 0))]). 
% let g = lambda x. 1 in g (g g);
:- run([(let(g) = (fn(x : none) -> succ(0)) in g $ (g $ g))]).

:- halt.

まとめ

型再構築とは型を推論することです。

Bernardino Cametti: Diana as Huntress, Rome 1717/1720, marble (pedestal by Pascal Latour, 1754). Skulpturensammlung (Inv. 9/59; acquired in 1959), Bode-Museum Berlin.
Diana

Diana (Classical Latin: [dɪˈaːna]) is a Roman goddess of the hunt, the Moon, and nature, associated with wild animals and woodland. She is equated with the Greek goddess Artemis, and absorbed much of Artemis' mythology early in Roman history, including a birth on the island of Delos to parents Jupiter and Latona, and a twin brother, Apollo,[2] though she had an independent origin in Italy.

Diana was known as the virgin goddess of childbirth and women. She was one of the three maiden goddesses, along with Minerva and Vesta, who swore never to marry. Oak groves and deer were especially sacred to her. Diana made up a triad with two other Roman deities; Egeria the water nymph, her servant and assistant midwife; and Virbius, the woodland god.[3]

Diana is revered in modern Neopagan religions including Roman Neopaganism, Stregheria, and Wicca. From the medieval to the modern period, as folklore attached to her developed and was eventually adapted into neopagan religions, the mythology surrounding Diana grew to include a consort (Lucifer) and daughter (Aradia), figures sometimes recognized by modern traditions.[4] In the ancient, medieval, and modern periods, Diana has been considered a triple deity, merged with a goddess of the moon (Luna/Selene) and the underworld (usually Hecate).[5][6]

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0