0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

PrologAdvent Calendar 2019

Day 13

Prolog でわかる TAPL 13日目 - 第Ⅵ部 高階の型システム (2)

Last updated at Posted at 2019-12-11

アレクサンドル・カバネル『ヴィーナスの誕生』(1863年)
ウェヌス

ウェヌス(古典ラテン語: Venus - [ˈwɛ.nʊs])は、ローマ神話の愛と美の女神。日本語では英語読み「ヴィーナス」([ˈvi.nəs])と呼ばれることが多い。

本来は囲まれた菜園を司る神であったが、後にギリシア神話におけるアプロディーテーと同一視され、愛と美の女神と考えられるようになった。一般には半裸或いは全裸の美女の姿で表される。ウェヌスは固有の神話が残っておらず、ローマ神話でウェヌスに帰せられる神話は本来アプロディーテーのものである。

ギリシアではアプロディテが金星を司るとされ、それに影響を受けてラテン語でも金星をウェヌスと呼ぶ。ヨーロッパ諸語で金星をウェヌスに相当する名で呼ぶのはこのためである。また、ラテン語で金曜日はdies Veneris(ウェヌスの日)であり、多くのロマンス諸語でのこの曜日の名称はそれに由来する。

TAPL 30,31 高階有界量化 Fω<:

図31-1.高階有界量化 (Fω<:)

→ ∀ ∃ ⇒ Fω(図30-1)とカーネルF<:(図26-1)の拡張

構文

t ::=       項:
  x         変数
  λx:T.t    ラムダ抽象
  t t       関数適用
  λX<:T.t   型抽象
  t[T]      型適用
v ::=       値:
  λx:T.t    ラムダ抽象値
  λX<:T.t   型抽象値
T ::=       型:
  X         型変数
  T->T      関数の型
  ∀X<:T.T  全称型
  λX::K.T   演算子抽象
  T T       演算子適用
Γ ::=       文脈:
  ∅         空の文脈
  Γ,x:T     項変数の束縛
  Γ,X<:T    型変数の束縛
K ::=       カインド:
  *         真の型のカインド
  K=>K      演算子のカインド

評価 t ==> t'
t1 ==> t1'
-------------------------------  (E-App1)
t1 t2 ==> t1' t2

t2 ==> t2'
-------------------------------  (E-App2)
v1 t2 ==> v1 t2'

(λx:T11.t12) v2 ==> [x->v2]t12   (E-AppAbs)

t1 ==> t1'
-------------------------------  (E-TApp)
t1 [T2] ==> t1' [T2]

(λx<:T11.t12)[T2] ==> [x->T2]t12 (E-AppAbs)

カインド付け Γ|- T :: K
Γ |- Top :: * (K-Top)

X<:T ∈ Γ   Γ |- X :: K
------------------------------------ (K-TVar)
Γ |- X ::K

Γ,X<:Top[K1] |- T2::K2
------------------------------------ (K-Abs)
Γ |- λX::K1.T2 :: K1=>K2

Γ |- T1 :: K11 => K12   Γ |- T2::K11
------------------------------------ (K-App)
Γ |- T1 T2 :: K1=>K12

Γ |- T1 :: *   Γ |- T2 :: *
------------------------------------ (K-Arrow)
Γ |- T1->T2 :: *

Γ,X<:T1 |- T2 :: *
------------------------------------ (K-All)
Γ |- ∀X<:T1.T2 :: *

型等価関係 S ≡ T

T ≡ T                 (Q-Refl)

T ≡ S
--------------------- (Q-Symm)
S ≡ T

S ≡ U   U ≡ T
--------------------- (Q-Trans)
S ≡ T

S1 ≡ T1   S2 ≡ T2
--------------------- (Q-Arrow)
S1->S2 ≡ T1->T2

S1 ≡ T1   S2 ≡ T2
--------------------- (Q-All)
∀X<:S1.S2 ≡ ∀X<:T1.T2

S2 ≡ T2
--------------------- (Q-Abs)
λX::K1.S2 ≡ λX::K1.T2

S1 ≡ T1   S2 ≡ T2
--------------------- (Q-App)
S1 S2 ≡ T1 T2

(λX::K11.T12)T2 ≡ [X|->T2]T12
                      (Q-AppAbs)

図31-1.高階有界量化 (Fω<:)(2)

部分型付け S <: T

Γ ⊢ S <: U  Γ ⊢ U <: T  Γ ⊢ U :: K
--------------------------------- (S-Trans)
Γ ⊢ S <: T

Γ ⊢ S :: *
--------------------------------- (S-Top)
Γ ⊢ S <: Top

Γ ⊢ T1 <: S1  Γ ⊢ S2 <: T2
--------------------------------- (S-Arrow)
Γ ⊢ S1 -> S2 <: T1 -> T2

X <: T ∈ Γ
--------------------------------- (S-TVar)
Γ ⊢ X <: T

Γ ⊢ U1 :: K1   Γ,X<:U1 ⊢ S2 <: T2
--------------------------------- (S-All)
Γ ⊢ ∀X<:U1.S2 <: ∀X<:U1.T2

Γ,X<:Top[K1] ⊢ S2 <: T2
--------------------------------- (S-Abs)
Γ ⊢ λX::K1.S2 <: λX::K2.T2

Γ ⊢ S1 <: T1
--------------------------------- (S-App)
Γ ⊢ S1 U <: T1 U

Γ ⊢ S :: K   Γ ⊢ T :: K   S ≡ T
--------------------------------- (S-Eq)
Γ ⊢ S <: T

型付け Γ ⊢ t : T

x : T ∈ Γ
------------------------------ (T-Var)
Γ ⊢ x : T

Γ ⊢ T1 :: *   Γ,x:T1 ⊢ t2 : T2
------------------------------ (T-Abs)
Γ ⊢ λx:T1.t2 : T1 -> T2

Γ ⊢ t1 : T11 -> T12
Γ ⊢ t2 : T11
------------------------------ (T-App)
Γ ⊢ t1 t2 : T12

Γ ⊢ t : S   S == T   Γ ⊢ T : *
------------------------------ (T-Eq)
Γ ⊢ t : T

Γ,X<:T ⊢ t2 : T2
-------------------------------------- (T-TAbs)
Γ ⊢ λX<:T.t2 : ∀X<:T.T2

Γ ⊢ t1 : ∀X<:T11.T12   Γ ⊢ T2 <: T11
-------------------------------------- (T-TApp)
Γ ⊢ t1[T2] : [X -> T2] T12

Γ ⊢ t : S   Γ ⊢ S <: T   Γ ⊢ T :: *
-------------------------------------- (T-Sub)
Γ ⊢ t : T

実装

  • fullfomsub フル有界量化サブ bool+nat+unit+float+string+λ+let+letrec+fix+inert+as+record+top+<:+all+some+kind(26,31章)
  • fomsub 高階部分型付け λ+top+<:+all+kind(31章)
  • fullfomsubref フル有界量化サブ+参照 bool+nat+unit+float+string+λ+let+letrec+fix+inert+as+record+case of+try error+ref+top+bot+<:+source+sink+all+some+kind+import

fomsub

プログラムの全体を見る
fomsub.pl
:- discontiguous((\-)/2).
:- discontiguous((/-)/2).
:- op(1200, xfx, ['--', where]).
:- op(1100, xfy, [in]).
:- op(1050, xfy, ['=>']).
:- op(920, xfx, ['==>', '==>>', '<:']).
:- op(910, xfx, ['/-', '\\-']).
:- op(600, xfy, ['::', as]).
:- op(500, yfx, ['$', !, tsubst, tsubst2, subst, subst2, tmsubst, tmsubst2, '<-']).
:- op(400, yfx, ['#']).
term_expansion((A where B), (A :- B)).
:- op(920, xfx, ['<:']).
:- op(600, xfy, ['::']).
:- style_check(- singleton). 

% ------------------------   SYNTAX  ------------------------

:- use_module(rtg).

w ::= bool | nat | unit | float | string | top | true | false. % キーワード:
syntax(x). x(X) :- \+ w(X), atom(X), sub_atom(X, 0, 1, _, P), (char_type(P, lower) ; P = '_'). % 識別子:
syntax(tx). tx(TX) :- atom(TX), sub_atom(TX, 0, 1, _, P), char_type(P, upper). % 型変数:
syntax(floatl). floatl(F) :- float(F).     % 浮動小数点数
syntax(stringl). stringl(F) :- string(F).  % 文字列
syntax(l). l(L) :- atom(L) ; integer(L).   % ラベル
list(A) ::= [] | [A | list(A)].            % リスト

k ::=                       % カインド:
      '*'                   % 真の型のカインド
    | (k => k)              % 演算子のカインド
    .
t(T)                        :- k(T), !, fail.
t ::=                       % 型:
      bool                  % ブール値型
    | nat                   % 自然数型
    | unit                  % Unit型
    | float                 % 浮動小数点数型
    | string                % 文字列型
    | top                   % 最大の型
    | tx                    % 型変数
    | (t -> t)              % 関数の型
    | {list(l : t)}         % レコードの型
    | (all(tx :: t) => t)   % 全称型
    | {some(tx :: t), t}    % 存在型
    | (fn(tx :: k) => t)    % 型抽象
    | t $ t                 % 関数適用
    .
m ::=                       % 項:
      true                  % 真
    | false                 % 偽
    | if(m, m, m)           % 条件式
    | 0                     % ゼロ
    | succ(m)               % 後者値
    | pred(m)               % 前者値
    | iszero(m)             % ゼロ判定
    | unit                  % 定数unit
    | floatl                % 浮動小数点数値
    | m * m                 % 浮動小数点乗算
    | stringl               % 文字列定数
    | x                     % 変数
    | (fn(x : t) -> m)      % ラムダ抽象
    | m $ m                 % 関数適用
    | (let(x) = m in m)     % let束縛
    | fix(m)                % mの不動点
    | inert(t) | m as t     % 型指定
    | {list(l = m)}         % レコード
    | m # l                 % 射影
    | {(t, m)} as t         % パッケージ化
    | (let(tx, x) = m in m) % アンパッケージ化
    | (fn(tx <: t) => m)    % 型抽象
    | m![t]                 % 型適用
    .
n ::=                       % 数値:
      0                     % ゼロ
    | succ(n)               % 後者値
    .
v ::=                       % 値:
      true                  % 真
    | false                 % 偽
    | n                     % 数値
    | unit                  % 定数unit
    | floatl                % 浮動小数点数値
    | stringl               % 文字列定数
    | (fn(x : t) -> m)      % ラムダ抽象
    | {list(l = v)}         % レコード
    | {(t, v)} as t         % パッケージ化
    | (fn(tx <: t) => m)    % 型抽象
    . 

% ------------------------   SUBSTITUTION  ------------------------

bool![(J -> S)] tsubst bool.
nat![(J -> S)] tsubst nat.
unit![(J -> S)] tsubst unit.
float![(J -> S)] tsubst float.
string![(J -> S)] tsubst string.
top![(J -> S)] tsubst top.
J![(J -> S)] tsubst S                                           :- tx(J).
X![(J -> S)] tsubst X                                           :- tx(X).
(T1 -> T2)![(J -> S)] tsubst (T1_ -> T2_)                       :- T1![(J -> S)] tsubst T1_, T2![(J -> S)] tsubst T2_.
{Mf}![(J -> S)] tsubst {Mf_}                                    :- maplist([L : T, L : T_] >> (T![(J -> S)] tsubst T_), Mf, Mf_).
(all(TX :: T1) => T2)![(J -> S)] tsubst (all(TX :: T1_) => T2_) :- T1![TX, (J -> S)] tsubst2 T1_, T2![TX, (J -> S)] tsubst2 T2_.
{some(TX :: T1), T2}![(J -> S)] tsubst {some(TX :: T1_), T2_}   :- T1![TX, (J -> S)] tsubst2 T1_, T2![TX, (J -> S)] tsubst2 T2_.
(fn(TX :: K) => T2)![(J -> S)] tsubst (fn(TX :: K) => T2_)      :- T2![TX, (J -> S)] tsubst2 T2_.
T1 $ T2![(J -> S)] tsubst (T1_ $ T2_)                           :- T1![(J -> S)] tsubst T1_, T2![(J -> S)] tsubst T2_.
T![X, (X -> S)] tsubst2 T.
T![X, (J -> S)] tsubst2 T_                                      :- T![(J -> S)] tsubst T_.

true![(J -> M)] subst true.
false![(J -> M)] subst false.
if(M1, M2, M3)![(J -> M)] subst if(M1_, M2_, M3_)                  :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_, M3![(J -> M)] subst M3_.
0![(J -> M)] subst 0.
succ(M1)![(J -> M)] subst succ(M1_)                                :- M1![(J -> M)] subst M1_.
pred(M1)![(J -> M)] subst pred(M1_)                                :- M1![(J -> M)] subst M1_.
iszero(M1)![(J -> M)] subst iszero(M1_)                            :- M1![(J -> M)] subst M1_.
unit![(J -> M)] subst unit.
F1![(J -> M)] subst F1                                             :- float(F1).
M1 * M2![(J -> M)] subst M1_ * M2_                                 :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_.
X![(J -> M)] subst X                                               :- string(X).
J![(J -> M)] subst M                                               :- x(J).
X![(J -> M)] subst X                                               :- x(X).
(fn(X : T1) -> M2)![(J -> M)] subst (fn(X : T1) -> M2_)            :- M2![X, (J -> M)] subst2 M2_.
M1 $ M2![(J -> M)] subst (M1_ $ M2_)                               :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_.
(let(X) = M1 in M2)![(J -> M)] subst (let(X) = M1_ in M2_)         :- M1![(J -> M)] subst M1_, M2![X, (J -> M)] subst2 M2_.
fix(M1)![(J -> M)] subst fix(M1_)                                  :- M1![(J -> M)] subst M1_.
inert(T1)![(J -> M)] subst inert(T1).
(M1 as T1)![(J -> M)] subst (M1_ as T1)                            :- M1![(J -> M)] subst M1_.
{Mf}![(J -> M)] subst {Mf_}                                        :- maplist([L = Mi, L = Mi_] >> (Mi![(J -> M)] subst Mi_), Mf, Mf_).
M1 # L![(J -> M)] subst M1_ # L                                    :- M1![(J -> M)] subst M1_.
({(T1, M2)} as T3)![(J -> M)] subst ({(T1, M2_)} as T3)            :- M2![(J -> M)] subst M2_.
(let(TX, X) = M1 in M2)![(J -> M)] subst (let(TX, X) = M1_ in M2_) :- M1![X, (J -> M)] subst2 M1_, M2![X, (J -> M)] subst2 M2_.
(fn(TX <: T) => M2)![(J -> M)] subst (fn(TX <: T) => M2_)          :- M2![(J -> M)] subst M2_.
M1![T2]![(J -> M)] subst (M1_![T2])                                :- M1![(J -> M)] subst M1_.
S![(J -> M)] subst _                                               :- writeln(error : subst(J, M, S)), fail.
S![J, (J -> M)] subst2 S.
S![X, (J -> M)] subst2 M_                                          :- S![(J -> M)] subst M_.

true![(J -> S)] tmsubst true.
false![(J -> S)] tmsubst false.
if(M1, M2, M3)![(J -> S)] tmsubst if(M1_, M2_, M3_)                  :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_, M3![(J -> S)] tmsubst M3_.
0![(J -> S)] tmsubst 0.
succ(M1)![(J -> S)] tmsubst succ(M1_)                                :- M1![(J -> S)] tmsubst M1_.
pred(M1)![(J -> S)] tmsubst pred(M1_)                                :- M1![(J -> S)] tmsubst M1_.
iszero(M1)![(J -> S)] tmsubst iszero(M1_)                            :- M1![(J -> S)] tmsubst M1_.
unit![(J -> M)] tmsubst unit.
F1![(J -> M)] tmsubst F1                                             :- float(F1).
M1 * M2![(J -> M)] tmsubst M1_ * M2_                                 :- M1![(J -> M)] tmsubst M1_, M2![(J -> M)] tmsubst M2_.
X![(J -> M)] tmsubst X                                               :- string(X).
X![(J -> S)] tmsubst X                                               :- x(X).
(fn(X : T1) -> M2)![(J -> S)] tmsubst (fn(X : T1_) -> M2_)           :- T1![(J -> S)] tsubst T1_, M2![(J -> S)] tmsubst M2_.
M1 $ M2![(J -> S)] tmsubst (M1_ $ M2_)                               :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_.
(let(X) = M1 in M2)![(J -> S)] tmsubst (let(X) = M1_ in M2_)         :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_.
fix(M1)![(J -> M)] tmsubst fix(M1_)                                  :- M1![(J -> M)] tmsubst M1_.
inert(T1)![(J -> M)] tmsubst inert(T1).
(M1 as T1)![(J -> S)] tmsubst (M1_ as T1_)                           :- M1![(J -> S)] tmsubst M1_, T1![(J -> S)] tsubst T1_.
{Mf}![(J -> M)] tmsubst {Mf_}                                        :- maplist([L = Mi, L = Mi_] >> (Mi![(J -> M)] tmsubst Mi_), Mf, Mf_).
M1 # L![(J -> M)] tmsubst M1_ # L                                    :- M1![(J -> M)] tmsubst M1_.
({(T1, M2)} as T3)![(J -> M)] tmsubst ({(T1_, M2_)} as T3_)          :- T1![(J -> S)] tsubst T1_, M2![(J -> M)] tmsubst M2_, T3![(J -> S)] tsubst T3_.
(let(TX, X) = M1 in M2)![(J -> M)] tmsubst (let(TX, X) = M1_ in M2_) :- M1![TX, (J -> M)] tmsubst2 M1_, M2![TX, (J -> M)] tmsubst2 M2_.
(fn(TX <: T1) => M2)![(J -> S)] tmsubst (fn(TX <: T1_) => M2_)       :- T1![TX, (J -> S)] tsubst2 T1_, M2![TX, (J -> S)] tmsubst2 M2_.
M1![T2]![(J -> S)] tmsubst (M1_![T2_])                               :- M1![(J -> S)] tmsubst M1_, T2![(J -> S)] tsubst T2_.
T![X, (X -> S)] tmsubst2 T.
T![X, (J -> S)] tmsubst2 T_                                          :- T![(J -> S)] tmsubst T_.

getb(Γ, X, B) :- member(X - B, Γ).
gett(Γ, X, T) :- getb(Γ, X, bVar(T)).
gett(Γ, X, T) :- getb(Γ, X, bMAbb(_, T)). 
%gett(Γ,X,_) :- writeln(error:gett(Γ,X)),fail.

maketop('*', top).
maketop((K1 => K2), (fn('_' :: K1) => K2_)) :- maketop(K2, K2_). 

% ------------------------   EVALUATION  ------------------------

e([L = M | Mf], M, [L = M_ | Mf], M_)  :- \+ v(M).
e([L = M | Mf], M1, [L = M | Mf_], M_) :- v(M), e(Mf, M1, Mf_, M_). 

%eval1(_,M,_) :- writeln(eval1:M),fail.

Γ /- if(true, M2, _) ==> M2.
Γ /- if(false, _, M3) ==> M3.
Γ /- if(M1, M2, M3) ==> if(M1_, M2, M3)                   where Γ /- M1 ==> M1_.
Γ /- succ(M1) ==> succ(M1_)                               where Γ /- M1 ==> M1_.
Γ /- pred(0) ==> 0.
Γ /- pred(succ(N1)) ==> N1                                where n(N1).
Γ /- pred(M1) ==> pred(M1_)                               where Γ /- M1 ==> M1_.
Γ /- iszero(0) ==> true.
Γ /- iszero(succ(N1)) ==> false                           where n(N1).
Γ /- iszero(M1) ==> iszero(M1_)                           where Γ /- M1 ==> M1_.
Γ /- F1 * F2 ==> F3                                       where float(F1), float(F2), F3 is F1 * F2.
Γ /- V1 * M2 ==> V1 * M2_                                 where v(V1), Γ /- M2 ==> M2_.
Γ /- M1 * M2 ==> M1_ * M2                                 where Γ /- M1 ==> M1_.
Γ /- X ==> M                                              where x(X), getb(Γ, X, bMAbb(M, _)).
Γ /- (fn(X : _) -> M12) $ V2 ==> R                        where v(V2), M12![(X -> V2)] subst R.
Γ /- V1 $ M2 ==> V1 $ M2_                                 where v(V1), Γ /- M2 ==> M2_.
Γ /- M1 $ M2 ==> M1_ $ M2                                 where Γ /- M1 ==> M1_.
Γ /- (let(X) = V1 in M2) ==> M2_                          where v(V1), M2![(X -> V1)] subst M2_.
Γ /- (let(X) = M1 in M2) ==> (let(X) = M1_ in M2)         where Γ /- M1 ==> M1_.
Γ /- fix((fn(X : T) -> M12)) ==> M12_                     where M12![(X -> fix((fn(X : T) -> M12)))] subst M12_.
Γ /- fix(M1) ==> fix(M1_)                                 where Γ /- M1 ==> M1_.
Γ /- V1 as _ ==> V1                                       where v(V1).
Γ /- M1 as T ==> M1_ as T                                 where Γ /- M1 ==> M1_.
Γ /- {Mf} ==> {Mf_}                                       where e(Mf, M, Mf_, M_), Γ /- M ==> M_.
Γ /- {Mf} # L ==> M                                       where member(L = M, Mf).
Γ /- M1 # L ==> M1_ # L                                   where Γ /- M1 ==> M1_.
Γ /- {(T1, M2)} as T3 ==> {(T1, M2_)} as T3               where Γ /- M2 ==> M2_.
Γ /- (let(_, X) = {(T11, V12)} as _ in M2) ==> M          where v(V12), M2![(X -> V12)] subst M2_, M2_![(X -> T11)] tmsubst M.
Γ /- (let(TX, X) = M1 in M2) ==> (let(TX, X) = M1_ in M2) where Γ /- M1 ==> M1_.
Γ /- (fn(X <: _) => M11)![T2] ==> M11_                    where M11![(X -> T2)] tmsubst M11_.
Γ /- M1![T2] ==> M1_![T2]                                 where Γ /- M1 ==> M1_. 
%eval1(Γ,M,_):-writeln(error:eval1(Γ,M)),fail.

Γ /- M ==>> M_ where Γ /- M ==> M1, Γ /- M1 ==>> M_.
Γ /- M ==>> M. 

% ------------------------   KINDING  ------------------------

gettabb(Γ, X, T)                        :- getb(Γ, X, bTAbb(T, _)).
compute(Γ, X, T)                        :- tx(X), gettabb(Γ, X, T).
compute(Γ, (fn(X :: _) => T12) $ T2, T) :- T12![(X -> T2)] tsubst T.
simplify(Γ, T1 $ T2, T_)                :- simplify(Γ, T1, T1_), simplify2(Γ, T1_ $ T2, T_).
simplify(Γ, T, T_)                      :- simplify2(Γ, T, T_).
simplify2(Γ, T, T_)                     :- compute(Γ, T, T1), simplify(Γ, T1, T_).
simplify2(Γ, T, T).

Γ /- S = T :- simplify(Γ, S, S_), simplify(Γ, T, T_), Γ /- S_ == T_.
Γ /- bool == bool.
Γ /- nat == nat.
Γ /- unit == unit.
Γ /- float == float.
Γ /- string == string.
Γ /- top == top.
Γ /- X == T                                        :- tx(X), gettabb(Γ, X, S), Γ /- S = T.
Γ /- S == X                                        :- tx(X), gettabb(Γ, X, T), Γ /- S = T.
Γ /- X == X                                        :- tx(X).
Γ /- (S1 -> S2) == (T1 -> T2)                      :- Γ /- S1 = T1, Γ /- S2 = T2.
Γ /- {Sf} == {Tf}                                  :- length(Sf, Len), length(Tf, Len),
                                                      maplist([L : T] >> (member(L : S, Sf), Γ /- S = T), Tf).
Γ /- (all(TX :: S1) => S2) == (all(_ :: T1) => T2) :- Γ /- S1 = T1, [TX - bName | Γ] /- S2 = T2.
Γ /- {some(TX :: S1), S2} == {some(_ :: T1), T2}   :- Γ /- S1 = T1, [TX - bName | Γ] /- S2 = T2.
Γ /- (fn(TX :: K1) => S2) == (fn(_ :: K1) => T2)   :- [TX - bName | g] /- S2 = T2.
Γ /- S1 $ S2 == T1 $ T2                            :- Γ /- S1 = T1, Γ /- S2 = T2.

Γ /- T :: K                            where Γ \- T :: K, !.
Γ /- T :: K                            where writeln(error : kindof(T, K)), fail.
Γ \- X :: '*'                          where tx(X), \+ member(X - _, Γ).
Γ \- X :: K                            where tx(X), getb(Γ, X, bTVar(T)), Γ /- T :: K, !.
Γ \- X :: K                            where tx(X), !, getb(Γ, X, bTAbb(_, K)).
Γ \- (T1 -> T2) :: '*'                 where !, Γ /- T1 :: '*', Γ /- T2 :: '*'.
Γ \- {Tf} :: '*'                       where maplist([L : S] >> (Γ /- S :: '*'), Tf).
Γ \- (all(TX :: T1) => T2) :: '*'      where !, [TX - bTVar(T1) | Γ] /- T2 :: '*'.
Γ \- (fn(TX :: K1) => T2) :: (K1 => K) where !, maketop(K1, T1), [TX - bTVar(T1) | Γ] /- T2 :: K.
Γ \- T1 $ T2 :: K12                    where !, Γ /- T1 :: (K11 => K12), Γ /- T2 :: K11.
Γ \- {some(TX :: T1), T2} :: '*'       where !, [TX - bTVar(T1) | Γ] /- T2 :: '*'.
Γ \- T :: '*'. 

% ------------------------   SUBTYPING  ------------------------

promote(Γ, X, T)          :- tx(X), getb(Γ, X, bTVar(T)).
promote(Γ, S $ T, S_ $ T) :- promote(Γ, S, S_).

Γ /- S <: T                                        where Γ /- S = T.
Γ /- S <: T                                        where simplify(Γ, S, S_), simplify(Γ, T, T_), Γ \- S_ <: T_.
Γ \- _ <: top.
Γ \- X <: T                                        where tx(X), promote(Γ, X, S), Γ /- S <: T.
Γ \- (S1 -> S2) <: (T1 -> T2)                      where Γ /- T1 <: S1, Γ /- S2 <: T2.
Γ \- {SF} <: {TF}                                  where maplist([L : T] >> (member(L : S, SF), Γ /- S <: T), TF).
Γ \- T1 $ T2 <: T                                  where promote(Γ, T1 $ T2, S), Γ /- S <: T.
Γ \- (fn(TX :: K1) => S2) <: (fn(_ :: K1) => T2)   where maketop(K1, T1), [TX - bTVar(T1) | Γ] /- S2 <: T2.
Γ \- (all(TX :: S1) => S2) <: (all(_ :: T1) => T2) where Γ /- S1 <: T1, Γ /- T1 <: S1, [TX - bTVar(T1) | Γ] /- S2 <: T2.
Γ \- {some(TX :: S1), S2} <: {some(_ :: T1), T2}   where Γ /- S1 <: T1, Γ /- T1 <: S1, [TX - bTVar(T1) | Γ] /- S2 <: T2.

Γ /- S /\ T : T                            :- Γ /- S <: T.
Γ /- S /\ T : S                            :- Γ /- T <: S.
Γ /- S /\ T : R                            :- simplify(Γ, S, S_), simplify(Γ, T, T_), Γ \- S_ /\ T_ : R.
Γ \- {SF} /\ {TF} : {UF_}                  :- include([L : _] >> member(L : _, TF), SF, UF),
                                              maplist([L : S, L : T_] >> (member(L : T, TF), Γ /- S /\ T : T_), UF, UF_).
Γ \- (all(TX :: S1) => S2) /\ (all(_ :: T1) => T2) : (all(TX :: S1) => T2_)
                                           :- Γ /- S1 <: T1, Γ /- T1 <: S1, [TX - bTVar(T1) | Γ] /- T1 /\ T2 : T2_.
Γ \- (S1 -> S2) /\ (T1 -> T2) : (S_ -> T_) :- Γ /- S1 \/ T1 : S_, Γ /- S2 /\ T2 : T_.
Γ \- _ /\ _ : top.

Γ /- S \/ T : S                            :- Γ /- S <: T.
Γ /- S \/ T : T                            :- Γ /- T <: S.
Γ /- S \/ T : R                            :- simplify(Γ, S, S_), simplify(Γ, T, T_), Γ \- S_ \/ T_ : R.
Γ \- {SF} \/ {TF} : {UF_}                  :- maplist([L : S, L : T_] >> (member(L : T, TF), Γ /- S \/ T : T_ ; T_ = S), SF, SF_),
                                              include([L : _] >> (\+ member(L : _, SF)), TF, TF_),
                                              append(SF_, TF_, UF_).
Γ \- (all(TX :: S1) => S2) \/ (all(_ :: T1) => T2) : (all(TX :: S1) => T2_)
                                           :- Γ /- S1 <: T1, Γ /- T1 <: S1,
                                              [TX - bTVar(T1) | Γ] /- T1 \/ T2 : T2_.
Γ \- (S1 -> S2) \/ (T1 -> T2) : (S_ -> T_) :- Γ /- S1 /\ T1 : S_, Γ /- S2 \/ T2 : T_. 

% ------------------------   TYPING  ------------------------

lcst(Γ, S, T) :- simplify(Γ, S, S_), lcst2(Γ, S_, T).
lcst2(Γ, S, T) :- promote(Γ, S, S_), lcst(Γ, S_, T).
lcst2(Γ, T, T). 

%typeof(Γ,M,_) :- writeln(typeof(Γ,M)),fail.

Γ /- true : bool.
Γ /- false : bool.
Γ /- if(M1, M2, M3) : T                           where Γ /- M1 : T1, Γ /- T1 <: bool,
                                                        Γ /- M2 : T2, Γ /- M3 : T3, Γ /- T2 /\ T3 : T.
Γ /- 0 : nat.
Γ /- succ(M1) : nat                               where Γ /- M1 : T1, Γ /- T1 <: nat.
Γ /- pred(M1) : nat                               where Γ /- M1 : T1, Γ /- T1 <: nat.
Γ /- iszero(M1) : bool                            where Γ /- M1 : T1, Γ /- T1 <: nat.
Γ /- unit : unit.
Γ /- F1 : float                                   where float(F1).
Γ /- M1 * M2 : float                              where Γ /- M1 : T1, Γ /- T1 <: float, Γ /- M2 : T2, Γ /- T2 <: float.
Γ /- X : string                                   where string(X).
Γ /- X : T                                        where x(X), !, gett(Γ, X, T).
Γ /- (fn(X : T1) -> M2) : (T1 -> T2_)             where Γ /- T1 :: '*', [X - bVar(T1) | Γ] /- M2 : T2_, !.
Γ /- M1 $ M2 : T12                                where Γ /- M1 : T1, lcst(Γ, T1, (T11 -> T12)), Γ /- M2 : T2, Γ /- T2 <: T11.
Γ /- (let(X) = M1 in M2) : T                      where Γ /- M1 : T1, [X - bVar(T1) | Γ] /- M2 : T.
Γ /- fix(M1) : T12                                where Γ /- M1 : T1, lcst(Γ, T1, (T11 -> T12)), Γ /- T12 <: T11.
Γ /- inert(T) : T.
Γ /- (M1 as T) : T                                where Γ /- T :: '*', Γ /- M1 : T1, Γ /- T1 <: T.
Γ /- {Mf} : {Tf}                                  where maplist([L = M, L : T] >> (Γ /- M : T), Mf, Tf), !.
Γ /- M1 # L : T                                   where Γ /- M1 : T1, lcst(Γ, T1, {Tf}), member(L : T, Tf).
Γ /- ({(T1, M2)} as T) : T                        where Γ /- T :: '*', simplify(Γ, T, {some(Y :: TBound), T2}),
                                                        Γ /- T1 <: TBound, Γ /- M2 : S2, T2![(Y -> T1)] tsubst T2_, Γ /- S2 <: T2_.
Γ /- (let(TX, X) = M1 in M2) : T2                 where Γ /- M1 : T1, lcst(Γ, T1, {some(_ :: TBound), T11}),
                                                        [X - bVar(T11), TX - bTVar(TBound) | Γ] /- M2 : T2.
Γ /- (fn(TX <: T1) => M2) : (all(TX :: T1) => T2) where [TX - bTVar(T1) | Γ] /- M2 : T2, !.
Γ /- M1![T2] : T12_                               where Γ /- M1 : T1, lcst(Γ, T1, (all(X :: T11) => T12)),
                                                        Γ /- T2 <: T11, T12![(X -> T2)] tsubst T12_, !.
Γ /- M : _                                        where writeln(error : typeof(Γ, M)), fail. 

% ------------------------   MAIN  ------------------------

show(Γ, X, bName)       :- format('~w\n', [X]).
show(Γ, X, bVar(T))     :- format('~w : ~w\n', [X, T]).
show(Γ, X, bTVar(T))    :- format('~w <: ~w\n', [X, T]).
show(Γ, X, bMAbb(M, T)) :- format('~w : ~w\n', [X, T]).
show(Γ, X, bTAbb(T, K)) :- format('~w :: ~w\n', [X, K]).

check_someBind(TBody, {(_, T12)} as _, bMAbb(T12, TBody)).
check_someBind(TBody, _, bVar(TBody)).

run({(TX, X)} = M, Γ, [X - B, TX - bTVar(TBound) | Γ])
                                                :- !, tx(TX), x(X), m(M), !, !, Γ /- M : T,
                                                   simplify(Γ, T, {some(_ :: TBound), TBody}), Γ /- M ==>> M_,
                                                   check_someBind(TBody, M_, B), format('~w\n~w : ~w\n', [TX, X, TBody]).
run(type(X <: K) = T, Γ, [X - bTAbb(T, K) | Γ]) :- !, tx(X), k(K), t(T), Γ /- T :: K, show(Γ, X, bTAbb(T, K)).
run(type(X) = T, Γ, [X - bTAbb(T, K) | Γ])      :- !, tx(X), t(T), Γ /- T :: K, show(Γ, X, bTAbb(T, K)).
run(X <: K, Γ, [X - bTVar(K) | Γ])              :- !, tx(X), k(K), show(Γ, X, bTVar(K)).
run(X : T, Γ, [X - bVar(T) | Γ])                :- !, x(X), t(T), show(Γ, X, bVar(T)).
run(X : T = M, Γ, [X - bMAbb(M_, T) | Γ])       :- !, x(X), t(T), m(M), Γ /- M : T1, Γ /- T1 = T,
                                                   Γ /- M ==>> M_, show(Γ, X, bMAbb(M_, T)).
run(X = M, Γ, [X - bMAbb(M_, T) | Γ])           :- !, x(X), m(M), !, Γ /- M : T, !, Γ /- M ==>> M_, !, show(Γ, X, bMAbb(M_, T)).
run(M, Γ, Γ)                                    :- !, m(M), !, Γ /- M : T, !, Γ /- M ==>> M_, !, writeln(M_ : T).

run(Ls) :- foldl(run, Ls, [], _). 

% ------------------------   TEST  ------------------------

% lambda x:Top. x;
:- run([(fn(x : top) -> x)]). 
% (lambda x:Top. x) (lambda x:Top. x);
:- run([(fn(x : top) -> x) $ (fn(x : top) -> x)]). 
% (lambda x:Top->Top. x) (lambda x:Top. x);
:- run([(fn(x : (top -> top)) -> x) $ (fn(x : top) -> x)]). 
% (lambda r:{x:Top->Top}. r.x r.x) 
%   {x=lambda z:Top.z, y=lambda z:Top.z}; 
:- run([(fn(r : {[x : (top -> top)]}) -> r # x $ r # x) $ {[x = (fn(z : top) -> z), y = (fn(z : top) -> z)]}]). 
% "hello";
:- run(["hello"]). 
% unit;
:- run([unit]). 
% lambda x:A. x;
:- run([(fn(x : 'A') -> x)]). 
% let x=true in x;
:- run([(let(x) = true in x)]). 
% {x=true, y=false};
:- run([{[x = true, y = false]}]). 
% {x=true, y=false}.x;
:- run([{[x = true, y = false]} # x]). 
% {true, false};
:- run([{[1 = true, 2 = false]}]). 
% {true, false}.1;
:- run([{[1 = true, 2 = false]} # 1]). 
% if true then {x=true,y=false,a=false} else {y=false,x={},b=false};
:- run([if(true, {[x = true, y = false, a = false]}, {[y = false, x = {[]}, b = false]})]). 
% timesfloat 2.0 3.14159;
:- run([2.0 * 3.14159]). 
% lambda X. lambda x:X. x; 
:- run([(fn('X' <: top) => fn(x : 'X') -> x)]). 
% (lambda X. lambda x:X. x) [All X.X->X]; 
:- run([(fn('X' <: top) => fn(x : 'X') -> x)![(all('X' :: top) => 'X' -> 'X')]]). 
% lambda X<:Top->Top. lambda x:X. x x; 
:- run([(fn('X' <: (top -> top)) => fn(x : 'X') -> x $ x)]). 
% lambda x:Bool. x;
:- run([(fn(x : bool) -> x)]). 
% (lambda x:Bool->Bool. if x false then true else false) 
%   (lambda x:Bool. if x then false else true); 
:- run([(fn(x : (bool -> bool)) -> if(x $ false, true, false)) $ (fn(x : bool) -> if(x, false, true))]). 
% lambda x:Nat. succ x;
:- run([(fn(x : nat) -> succ(x))]). 
% (lambda x:Nat. succ (succ x)) (succ 0); 
:- run([(fn(x : nat) -> succ(succ(x))) $ succ(0)]). 
% T = Nat->Nat;
% lambda f:T. lambda x:Nat. f (f x);
:- run([type('T') = (nat -> nat), (fn(f : 'T') -> fn(x : nat) -> f $ (f $ x))]). 
% {*All Y.Y, lambda x:(All Y.Y). x} as {Some X,X->X};
:- run([{((all('Y' :: top) => 'Y'), (fn(x : (all('Y' :: top) => 'Y')) -> x))} as {some('X' :: top), ('X' -> 'X')}]). 
% {*Nat, {c=0, f=lambda x:Nat. succ x}}
%   as {Some X, {c:X, f:X->Nat}};
:- run([{(nat, {[c = 0, f = (fn(x : nat) -> succ(x))]})} as {some('X' :: top), {[c : 'X', f : ('X' -> nat)]}}]). 
% let {X,ops} = {*Nat, {c=0, f=lambda x:Nat. succ x}}
%               as {Some X, {c:X, f:X->Nat}}
% in (ops.f ops.c);
:- run([(let('X', ops) = {(nat, {[c = 0, f = (fn(x : nat) -> succ(x))]})} as {some('X' :: top), {[c : 'X', f : ('X' -> nat)]}} in ops # f $ ops # c)]).
:- run([ 
% Pair = lambda X. lambda Y. All R. (X->Y->R) -> R;
type('Pair') = (fn('X' :: '*') => fn('Y' :: '*') => all('R' :: top) => ('X' -> 'Y' -> 'R') -> 'R'),  
% pair = lambda X.lambda Y.lambda x:X.lambda y:Y.lambda R.lambda p:X->Y->R.p x y;
pair = (fn('X' <: top) => fn('Y' <: top) => fn(x : 'X') -> fn(y : 'Y') -> fn('R' <: top) => fn(p : ('X' -> 'Y' -> 'R')) -> p $ x $ y),  
% fst = lambda X.lambda Y.lambda p:Pair X Y.p [X] (lambda x:X.lambda y:Y.x);
fst = (fn('X' <: top) => fn('Y' <: top) => fn(p : 'Pair' $ 'X' $ 'Y') -> p!['X'] $ (fn(x : 'X') -> fn(y : 'Y') -> x)),  
% snd = lambda X.lambda Y.lambda p:Pair X Y.p [Y] (lambda x:X.lambda y:Y.y);
snd = (fn('X' <: top) => fn('Y' <: top) => fn(p : 'Pair' $ 'X' $ 'Y') -> p!['Y'] $ (fn(x : 'X') -> fn(y : 'Y') -> y)),  
% pr = pair [Nat] [Bool] 0 false;
pr = pair![nat]![bool] $ 0 $ false, fst![nat]![bool] $ pr, snd![nat]![bool] $ pr,  

% List = lambda X. All R. (X->R->R) -> R -> R; 
type('List') = (fn('X' :: '*') => all('R' :: top) => ('X' -> 'R' -> 'R') -> 'R' -> 'R'),  

% diverge =
% lambda X.
%   lambda _:Unit.
%   fix (lambda x:X. x);
diverge = (fn('X' <: top) => fn('_' : unit) -> fix((fn(x : 'X') -> x))),  
% nil = lambda X.
%       (lambda R. lambda c:X->R->R. lambda n:R. n)
%       as List X; 
nil = (fn('X' <: top) => (fn('R' <: top) => fn(c : ('X' -> 'R' -> 'R')) -> fn(n : 'R') -> n) as 'List' $ 'X'),  
% cons = 
% lambda X.
%   lambda hd:X. lambda tl: List X.
%      (lambda R. lambda c:X->R->R. lambda n:R. c hd (tl [R] c n))
%      as List X; 
cons = (fn('X' <: top) => fn(hd : 'X') -> fn(tl : 'List' $ 'X') -> (fn('R' <: top) => fn(c : ('X' -> 'R' -> 'R')) -> fn(n : 'R') -> c $ hd $ (tl!['R'] $ c $ n)) as 'List' $ 'X'),  
% isnil =  
% lambda X. 
%   lambda l: List X. 
%     l [Bool] (lambda hd:X. lambda tl:Bool. false) true; 
isnil = (fn('X' <: top) => fn(l : 'List' $ 'X') -> l![bool] $ (fn(hd : 'X') -> fn(tl : bool) -> false) $ true),  
% head = 
% lambda X. 
%   lambda l: List X. 
%     (l [Unit->X] (lambda hd:X. lambda tl:Unit->X. lambda _:Unit. hd) (diverge [X]))
%     unit; 
head = (fn('X' <: top) => fn(l : 'List' $ 'X') -> l![(unit -> 'X')] $ (fn(hd : 'X') -> fn(tl : (unit -> 'X')) -> fn('_' : unit) -> hd) $ (diverge!['X']) $ unit),  
% tail =
% lambda X.
%   lambda l: List X.
%     (fst [List X] [List X] (
%       l [Pair (List X) (List X)]
%         (lambda hd: X. lambda tl: Pair (List X) (List X). 
%           pair [List X] [List X] 
%             (snd [List X] [List X] tl)  
%             (cons [X] hd (snd [List X] [List X] tl))) 
%         (pair [List X] [List X] (nil [X]) (nil [X]))))
%     as List X; 
tail = (fn('X' <: top) => fn(l : 'List' $ 'X') -> fst!['List' $ 'X']!['List' $ 'X'] $ (l!['Pair' $ ('List' $ 'X') $ ('List' $ 'X')] $ (fn(hd : 'X') -> fn(tl : 'Pair' $ ('List' $ 'X') $ ('List' $ 'X')) -> pair!['List' $ 'X']!['List' $ 'X'] $ (snd!['List' $ 'X']!['List' $ 'X'] $ tl) $ (cons!['X'] $ hd $ (snd!['List' $ 'X']!['List' $ 'X'] $ tl))) $ (pair!['List' $ 'X']!['List' $ 'X'] $ (nil!['X']) $ (nil!['X']))) as 'List' $ 'X')]).

:- halt.

高階多相で部分型付け(有界量化)したもの

fullfomsub

プログラムの全体を見る
fullfomsub.pl
:- discontiguous((\-)/2).
:- discontiguous((/-)/2).
:- op(1200, xfx, ['--', where]).
:- op(1100, xfy, [in]).
:- op(1050, xfy, ['=>']).
:- op(920, xfx, ['==>', '==>>', '<:']).
:- op(910, xfx, ['/-', '\\-']).
:- op(600, xfy, ['::', as]).
:- op(500, yfx, ['$', !, tsubst, tsubst2, subst, subst2, tmsubst, tmsubst2, '<-']).
:- op(400, yfx, ['#']).
term_expansion((A where B), (A :- B)).
:- op(920, xfx, ['<:']).
:- op(600, xfy, ['::']).
:- style_check(- singleton). 

% ------------------------   SYNTAX  ------------------------

:- use_module(rtg).

w ::= bool | nat | unit | float | string | top | true | false. % キーワード:
syntax(x). x(X) :- \+ w(X), atom(X), sub_atom(X, 0, 1, _, P), (char_type(P, lower) ; P = '_'). % 識別子:
syntax(tx). tx(TX) :- atom(TX), sub_atom(TX, 0, 1, _, P), char_type(P, upper). % 型変数:
syntax(floatl). floatl(F) :- float(F).     % 浮動小数点数
syntax(stringl). stringl(F) :- string(F).  % 文字列
syntax(l). l(L) :- atom(L) ; integer(L).   % ラベル
list(A) ::= [] | [A | list(A)].            % リスト

k ::=                       % カインド:
      '*'                   % 真の型のカインド
    | (k => k)              % 演算子のカインド
    .
t(T)                        :- k(T), !, fail.
t ::=                       % 型:
      bool                  % ブール値型
    | nat                   % 自然数型
    | unit                  % Unit型
    | float                 % 浮動小数点数型
    | string                % 文字列型
    | top                   % 最大の型
    | tx                    % 型変数
    | (t -> t)              % 関数の型
    | {list(l : t)}         % レコードの型
    | (all(tx :: t) => t)   % 全称型
    | {some(tx :: t), t}    % 存在型
    | (fn(tx :: k) => t)    % 型抽象
    | t $ t                 % 関数適用
    .
m ::=                       % 項:
      true                  % 真
    | false                 % 偽
    | if(m, m, m)           % 条件式
    | 0                     % ゼロ
    | succ(m)               % 後者値
    | pred(m)               % 前者値
    | iszero(m)             % ゼロ判定
    | unit                  % 定数unit
    | floatl                % 浮動小数点数値
    | m * m                 % 浮動小数点乗算
    | stringl               % 文字列定数
    | x                     % 変数
    | (fn(x : t) -> m)      % ラムダ抽象
    | m $ m                 % 関数適用
    | (let(x) = m in m)     % let束縛
    | fix(m)                % mの不動点
    | inert(t) | m as t     % 型指定
    | {list(l = m)}         % レコード
    | m # l                 % 射影
    | {(t, m)} as t         % パッケージ化
    | (let(tx, x) = m in m) % アンパッケージ化
    | (fn(tx <: t) => m)    % 型抽象
    | m![t]                 % 型適用
    .
n ::=                       % 数値:
      0                     % ゼロ
    | succ(n)               % 後者値
    .
v ::=                       % 値:
      true                  % 真
    | false                 % 偽
    | n                     % 数値
    | unit                  % 定数unit
    | floatl                % 浮動小数点数値
    | stringl               % 文字列定数
    | (fn(x : t) -> m)      % ラムダ抽象
    | {list(l = v)}         % レコード
    | {(t, v)} as t         % パッケージ化
    | (fn(tx <: t) => m)    % 型抽象
    . 

% ------------------------   SUBSTITUTION  ------------------------

bool![(J -> S)] tsubst bool.
nat![(J -> S)] tsubst nat.
unit![(J -> S)] tsubst unit.
float![(J -> S)] tsubst float.
string![(J -> S)] tsubst string.
top![(J -> S)] tsubst top.
J![(J -> S)] tsubst S                                           :- tx(J).
X![(J -> S)] tsubst X                                           :- tx(X).
(T1 -> T2)![(J -> S)] tsubst (T1_ -> T2_)                       :- T1![(J -> S)] tsubst T1_, T2![(J -> S)] tsubst T2_.
{Mf}![(J -> S)] tsubst {Mf_}                                    :- maplist([L : T, L : T_] >> (T![(J -> S)] tsubst T_), Mf, Mf_).
(all(TX :: T1) => T2)![(J -> S)] tsubst (all(TX :: T1_) => T2_) :- T1![TX, (J -> S)] tsubst2 T1_, T2![TX, (J -> S)] tsubst2 T2_.
{some(TX :: T1), T2}![(J -> S)] tsubst {some(TX :: T1_), T2_}   :- T1![TX, (J -> S)] tsubst2 T1_, T2![TX, (J -> S)] tsubst2 T2_.
(fn(TX :: K) => T2)![(J -> S)] tsubst (fn(TX :: K) => T2_)      :- T2![TX, (J -> S)] tsubst2 T2_.
T1 $ T2![(J -> S)] tsubst (T1_ $ T2_)                           :- T1![(J -> S)] tsubst T1_, T2![(J -> S)] tsubst T2_.
T![X, (X -> S)] tsubst2 T.
T![X, (J -> S)] tsubst2 T_                                      :- T![(J -> S)] tsubst T_.

true![(J -> M)] subst true.
false![(J -> M)] subst false.
if(M1, M2, M3)![(J -> M)] subst if(M1_, M2_, M3_)                  :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_, M3![(J -> M)] subst M3_.
0![(J -> M)] subst 0.
succ(M1)![(J -> M)] subst succ(M1_)                                :- M1![(J -> M)] subst M1_.
pred(M1)![(J -> M)] subst pred(M1_)                                :- M1![(J -> M)] subst M1_.
iszero(M1)![(J -> M)] subst iszero(M1_)                            :- M1![(J -> M)] subst M1_.
unit![(J -> M)] subst unit.
F1![(J -> M)] subst F1                                             :- float(F1).
M1 * M2![(J -> M)] subst M1_ * M2_                                 :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_.
X![(J -> M)] subst X                                               :- string(X).
J![(J -> M)] subst M                                               :- x(J).
X![(J -> M)] subst X                                               :- x(X).
(fn(X : T1) -> M2)![(J -> M)] subst (fn(X : T1) -> M2_)            :- M2![X, (J -> M)] subst2 M2_.
M1 $ M2![(J -> M)] subst (M1_ $ M2_)                               :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_.
(let(X) = M1 in M2)![(J -> M)] subst (let(X) = M1_ in M2_)         :- M1![(J -> M)] subst M1_, M2![X, (J -> M)] subst2 M2_.
fix(M1)![(J -> M)] subst fix(M1_)                                  :- M1![(J -> M)] subst M1_.
inert(T1)![(J -> M)] subst inert(T1).
(M1 as T1)![(J -> M)] subst (M1_ as T1)                            :- M1![(J -> M)] subst M1_.
{Mf}![(J -> M)] subst {Mf_}                                        :- maplist([L = Mi, L = Mi_] >> (Mi![(J -> M)] subst Mi_), Mf, Mf_).
M1 # L![(J -> M)] subst M1_ # L                                    :- M1![(J -> M)] subst M1_.
({(T1, M2)} as T3)![(J -> M)] subst ({(T1, M2_)} as T3)            :- M2![(J -> M)] subst M2_.
(let(TX, X) = M1 in M2)![(J -> M)] subst (let(TX, X) = M1_ in M2_) :- M1![X, (J -> M)] subst2 M1_, M2![X, (J -> M)] subst2 M2_.
(fn(TX <: T) => M2)![(J -> M)] subst (fn(TX <: T) => M2_)          :- M2![(J -> M)] subst M2_.
M1![T2]![(J -> M)] subst (M1_![T2])                                :- M1![(J -> M)] subst M1_.
S![(J -> M)] subst _                                               :- writeln(error : subst(J, M, S)), fail.
S![J, (J -> M)] subst2 S.
S![X, (J -> M)] subst2 M_                                          :- S![(J -> M)] subst M_.

true![(J -> S)] tmsubst true.
false![(J -> S)] tmsubst false.
if(M1, M2, M3)![(J -> S)] tmsubst if(M1_, M2_, M3_)                  :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_, M3![(J -> S)] tmsubst M3_.
0![(J -> S)] tmsubst 0.
succ(M1)![(J -> S)] tmsubst succ(M1_)                                :- M1![(J -> S)] tmsubst M1_.
pred(M1)![(J -> S)] tmsubst pred(M1_)                                :- M1![(J -> S)] tmsubst M1_.
iszero(M1)![(J -> S)] tmsubst iszero(M1_)                            :- M1![(J -> S)] tmsubst M1_.
unit![(J -> M)] tmsubst unit.
F1![(J -> M)] tmsubst F1                                             :- float(F1).
M1 * M2![(J -> M)] tmsubst M1_ * M2_                                 :- M1![(J -> M)] tmsubst M1_, M2![(J -> M)] tmsubst M2_.
X![(J -> M)] tmsubst X                                               :- string(X).
X![(J -> S)] tmsubst X                                               :- x(X).
(fn(X : T1) -> M2)![(J -> S)] tmsubst (fn(X : T1_) -> M2_)           :- T1![(J -> S)] tsubst T1_, M2![(J -> S)] tmsubst M2_.
M1 $ M2![(J -> S)] tmsubst (M1_ $ M2_)                               :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_.
(let(X) = M1 in M2)![(J -> S)] tmsubst (let(X) = M1_ in M2_)         :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_.
fix(M1)![(J -> M)] tmsubst fix(M1_)                                  :- M1![(J -> M)] tmsubst M1_.
inert(T1)![(J -> M)] tmsubst inert(T1).
(M1 as T1)![(J -> S)] tmsubst (M1_ as T1_)                           :- M1![(J -> S)] tmsubst M1_, T1![(J -> S)] tsubst T1_.
{Mf}![(J -> M)] tmsubst {Mf_}                                        :- maplist([L = Mi, L = Mi_] >> (Mi![(J -> M)] tmsubst Mi_), Mf, Mf_).
M1 # L![(J -> M)] tmsubst M1_ # L                                    :- M1![(J -> M)] tmsubst M1_.
({(T1, M2)} as T3)![(J -> M)] tmsubst ({(T1_, M2_)} as T3_)          :- T1![(J -> S)] tsubst T1_, M2![(J -> M)] tmsubst M2_, T3![(J -> S)] tsubst T3_.
(let(TX, X) = M1 in M2)![(J -> M)] tmsubst (let(TX, X) = M1_ in M2_) :- M1![TX, (J -> M)] tmsubst2 M1_, M2![TX, (J -> M)] tmsubst2 M2_.
(fn(TX <: T1) => M2)![(J -> S)] tmsubst (fn(TX <: T1_) => M2_)       :- T1![TX, (J -> S)] tsubst2 T1_, M2![TX, (J -> S)] tmsubst2 M2_.
M1![T2]![(J -> S)] tmsubst (M1_![T2_])                               :- M1![(J -> S)] tmsubst M1_, T2![(J -> S)] tsubst T2_.
T![X, (X -> S)] tmsubst2 T.
T![X, (J -> S)] tmsubst2 T_                                          :- T![(J -> S)] tmsubst T_.

getb(Γ, X, B) :- member(X - B, Γ).
gett(Γ, X, T) :- getb(Γ, X, bVar(T)).
gett(Γ, X, T) :- getb(Γ, X, bMAbb(_, T)). 
%gett(Γ,X,_) :- writeln(error:gett(Γ,X)),fail.

maketop('*', top).
maketop((K1 => K2), (fn('_' :: K1) => K2_)) :- maketop(K2, K2_). 

% ------------------------   EVALUATION  ------------------------

e([L = M | Mf], M, [L = M_ | Mf], M_)  :- \+ v(M).
e([L = M | Mf], M1, [L = M | Mf_], M_) :- v(M), e(Mf, M1, Mf_, M_). 

%eval1(_,M,_) :- writeln(eval1:M),fail.

Γ /- if(true, M2, _) ==> M2.
Γ /- if(false, _, M3) ==> M3.
Γ /- if(M1, M2, M3) ==> if(M1_, M2, M3)                   where Γ /- M1 ==> M1_.
Γ /- succ(M1) ==> succ(M1_)                               where Γ /- M1 ==> M1_.
Γ /- pred(0) ==> 0.
Γ /- pred(succ(N1)) ==> N1                                where n(N1).
Γ /- pred(M1) ==> pred(M1_)                               where Γ /- M1 ==> M1_.
Γ /- iszero(0) ==> true.
Γ /- iszero(succ(N1)) ==> false                           where n(N1).
Γ /- iszero(M1) ==> iszero(M1_)                           where Γ /- M1 ==> M1_.
Γ /- F1 * F2 ==> F3                                       where float(F1), float(F2), F3 is F1 * F2.
Γ /- V1 * M2 ==> V1 * M2_                                 where v(V1), Γ /- M2 ==> M2_.
Γ /- M1 * M2 ==> M1_ * M2                                 where Γ /- M1 ==> M1_.
Γ /- X ==> M                                              where x(X), getb(Γ, X, bMAbb(M, _)).
Γ /- (fn(X : _) -> M12) $ V2 ==> R                        where v(V2), M12![(X -> V2)] subst R.
Γ /- V1 $ M2 ==> V1 $ M2_                                 where v(V1), Γ /- M2 ==> M2_.
Γ /- M1 $ M2 ==> M1_ $ M2                                 where Γ /- M1 ==> M1_.
Γ /- (let(X) = V1 in M2) ==> M2_                          where v(V1), M2![(X -> V1)] subst M2_.
Γ /- (let(X) = M1 in M2) ==> (let(X) = M1_ in M2)         where Γ /- M1 ==> M1_.
Γ /- fix((fn(X : T) -> M12)) ==> M12_                     where M12![(X -> fix((fn(X : T) -> M12)))] subst M12_.
Γ /- fix(M1) ==> fix(M1_)                                 where Γ /- M1 ==> M1_.
Γ /- V1 as _ ==> V1                                       where v(V1).
Γ /- M1 as T ==> M1_ as T                                 where Γ /- M1 ==> M1_.
Γ /- {Mf} ==> {Mf_}                                       where e(Mf, M, Mf_, M_), Γ /- M ==> M_.
Γ /- {Mf} # L ==> M                                       where member(L = M, Mf).
Γ /- M1 # L ==> M1_ # L                                   where Γ /- M1 ==> M1_.
Γ /- {(T1, M2)} as T3 ==> {(T1, M2_)} as T3               where Γ /- M2 ==> M2_.
Γ /- (let(_, X) = {(T11, V12)} as _ in M2) ==> M          where v(V12), M2![(X -> V12)] subst M2_, M2_![(X -> T11)] tmsubst M.
Γ /- (let(TX, X) = M1 in M2) ==> (let(TX, X) = M1_ in M2) where Γ /- M1 ==> M1_.
Γ /- (fn(X <: _) => M11)![T2] ==> M11_                    where M11![(X -> T2)] tmsubst M11_.
Γ /- M1![T2] ==> M1_![T2]                                 where Γ /- M1 ==> M1_. 
%eval1(Γ,M,_):-writeln(error:eval1(Γ,M)),fail.

Γ /- M ==>> M_ where Γ /- M ==> M1, Γ /- M1 ==>> M_.
Γ /- M ==>> M. 

% ------------------------   KINDING  ------------------------

gettabb(Γ, X, T)                        :- getb(Γ, X, bTAbb(T, _)).
compute(Γ, X, T)                        :- tx(X), gettabb(Γ, X, T).
compute(Γ, (fn(X :: _) => T12) $ T2, T) :- T12![(X -> T2)] tsubst T.
simplify(Γ, T1 $ T2, T_)                :- simplify(Γ, T1, T1_), simplify2(Γ, T1_ $ T2, T_).
simplify(Γ, T, T_)                      :- simplify2(Γ, T, T_).
simplify2(Γ, T, T_)                     :- compute(Γ, T, T1), simplify(Γ, T1, T_).
simplify2(Γ, T, T).

Γ /- S = T :- simplify(Γ, S, S_), simplify(Γ, T, T_), Γ /- S_ == T_.
Γ /- bool == bool.
Γ /- nat == nat.
Γ /- unit == unit.
Γ /- float == float.
Γ /- string == string.
Γ /- top == top.
Γ /- X == T                                        :- tx(X), gettabb(Γ, X, S), Γ /- S = T.
Γ /- S == X                                        :- tx(X), gettabb(Γ, X, T), Γ /- S = T.
Γ /- X == X                                        :- tx(X).
Γ /- (S1 -> S2) == (T1 -> T2)                      :- Γ /- S1 = T1, Γ /- S2 = T2.
Γ /- {Sf} == {Tf}                                  :- length(Sf, Len), length(Tf, Len),
                                                      maplist([L : T] >> (member(L : S, Sf), Γ /- S = T), Tf).
Γ /- (all(TX :: S1) => S2) == (all(_ :: T1) => T2) :- Γ /- S1 = T1, [TX - bName | Γ] /- S2 = T2.
Γ /- {some(TX :: S1), S2} == {some(_ :: T1), T2}   :- Γ /- S1 = T1, [TX - bName | Γ] /- S2 = T2.
Γ /- (fn(TX :: K1) => S2) == (fn(_ :: K1) => T2)   :- [TX - bName | g] /- S2 = T2.
Γ /- S1 $ S2 == T1 $ T2                            :- Γ /- S1 = T1, Γ /- S2 = T2.

Γ /- T :: K                            where Γ \- T :: K, !.
Γ /- T :: K                            where writeln(error : kindof(T, K)), fail.
Γ \- X :: '*'                          where tx(X), \+ member(X - _, Γ).
Γ \- X :: K                            where tx(X), getb(Γ, X, bTVar(T)), Γ /- T :: K, !.
Γ \- X :: K                            where tx(X), !, getb(Γ, X, bTAbb(_, K)).
Γ \- (T1 -> T2) :: '*'                 where !, Γ /- T1 :: '*', Γ /- T2 :: '*'.
Γ \- {Tf} :: '*'                       where maplist([L : S] >> (Γ /- S :: '*'), Tf).
Γ \- (all(TX :: T1) => T2) :: '*'      where !, [TX - bTVar(T1) | Γ] /- T2 :: '*'.
Γ \- (fn(TX :: K1) => T2) :: (K1 => K) where !, maketop(K1, T1), [TX - bTVar(T1) | Γ] /- T2 :: K.
Γ \- T1 $ T2 :: K12                    where !, Γ /- T1 :: (K11 => K12), Γ /- T2 :: K11.
Γ \- {some(TX :: T1), T2} :: '*'       where !, [TX - bTVar(T1) | Γ] /- T2 :: '*'.
Γ \- T :: '*'. 

% ------------------------   SUBTYPING  ------------------------

promote(Γ, X, T)          :- tx(X), getb(Γ, X, bTVar(T)).
promote(Γ, S $ T, S_ $ T) :- promote(Γ, S, S_).

Γ /- S <: T                                        where Γ /- S = T.
Γ /- S <: T                                        where simplify(Γ, S, S_), simplify(Γ, T, T_), Γ \- S_ <: T_.
Γ \- _ <: top.
Γ \- X <: T                                        where tx(X), promote(Γ, X, S), Γ /- S <: T.
Γ \- (S1 -> S2) <: (T1 -> T2)                      where Γ /- T1 <: S1, Γ /- S2 <: T2.
Γ \- {SF} <: {TF}                                  where maplist([L : T] >> (member(L : S, SF), Γ /- S <: T), TF).
Γ \- T1 $ T2 <: T                                  where promote(Γ, T1 $ T2, S), Γ /- S <: T.
Γ \- (fn(TX :: K1) => S2) <: (fn(_ :: K1) => T2)   where maketop(K1, T1), [TX - bTVar(T1) | Γ] /- S2 <: T2.
Γ \- (all(TX :: S1) => S2) <: (all(_ :: T1) => T2) where Γ /- S1 <: T1, Γ /- T1 <: S1, [TX - bTVar(T1) | Γ] /- S2 <: T2.
Γ \- {some(TX :: S1), S2} <: {some(_ :: T1), T2}   where Γ /- S1 <: T1, Γ /- T1 <: S1, [TX - bTVar(T1) | Γ] /- S2 <: T2.

Γ /- S /\ T : T                            :- Γ /- S <: T.
Γ /- S /\ T : S                            :- Γ /- T <: S.
Γ /- S /\ T : R                            :- simplify(Γ, S, S_), simplify(Γ, T, T_), Γ \- S_ /\ T_ : R.
Γ \- {SF} /\ {TF} : {UF_}                  :- include([L : _] >> member(L : _, TF), SF, UF),
                                              maplist([L : S, L : T_] >> (member(L : T, TF), Γ /- S /\ T : T_), UF, UF_).
Γ \- (all(TX :: S1) => S2) /\ (all(_ :: T1) => T2) : (all(TX :: S1) => T2_)
                                           :- Γ /- S1 <: T1, Γ /- T1 <: S1, [TX - bTVar(T1) | Γ] /- T1 /\ T2 : T2_.
Γ \- (S1 -> S2) /\ (T1 -> T2) : (S_ -> T_) :- Γ /- S1 \/ T1 : S_, Γ /- S2 /\ T2 : T_.
Γ \- _ /\ _ : top.

Γ /- S \/ T : S                            :- Γ /- S <: T.
Γ /- S \/ T : T                            :- Γ /- T <: S.
Γ /- S \/ T : R                            :- simplify(Γ, S, S_), simplify(Γ, T, T_), Γ \- S_ \/ T_ : R.
Γ \- {SF} \/ {TF} : {UF_}                  :- maplist([L : S, L : T_] >> (member(L : T, TF), Γ /- S \/ T : T_ ; T_ = S), SF, SF_),
                                              include([L : _] >> (\+ member(L : _, SF)), TF, TF_),
                                              append(SF_, TF_, UF_).
Γ \- (all(TX :: S1) => S2) \/ (all(_ :: T1) => T2) : (all(TX :: S1) => T2_)
                                           :- Γ /- S1 <: T1, Γ /- T1 <: S1,
                                              [TX - bTVar(T1) | Γ] /- T1 \/ T2 : T2_.
Γ \- (S1 -> S2) \/ (T1 -> T2) : (S_ -> T_) :- Γ /- S1 /\ T1 : S_, Γ /- S2 \/ T2 : T_. 

% ------------------------   TYPING  ------------------------

lcst(Γ, S, T) :- simplify(Γ, S, S_), lcst2(Γ, S_, T).
lcst2(Γ, S, T) :- promote(Γ, S, S_), lcst(Γ, S_, T).
lcst2(Γ, T, T). 

%typeof(Γ,M,_) :- writeln(typeof(Γ,M)),fail.

Γ /- true : bool.
Γ /- false : bool.
Γ /- if(M1, M2, M3) : T                           where Γ /- M1 : T1, Γ /- T1 <: bool,
                                                        Γ /- M2 : T2, Γ /- M3 : T3, Γ /- T2 /\ T3 : T.
Γ /- 0 : nat.
Γ /- succ(M1) : nat                               where Γ /- M1 : T1, Γ /- T1 <: nat.
Γ /- pred(M1) : nat                               where Γ /- M1 : T1, Γ /- T1 <: nat.
Γ /- iszero(M1) : bool                            where Γ /- M1 : T1, Γ /- T1 <: nat.
Γ /- unit : unit.
Γ /- F1 : float                                   where float(F1).
Γ /- M1 * M2 : float                              where Γ /- M1 : T1, Γ /- T1 <: float, Γ /- M2 : T2, Γ /- T2 <: float.
Γ /- X : string                                   where string(X).
Γ /- X : T                                        where x(X), !, gett(Γ, X, T).
Γ /- (fn(X : T1) -> M2) : (T1 -> T2_)             where Γ /- T1 :: '*', [X - bVar(T1) | Γ] /- M2 : T2_, !.
Γ /- M1 $ M2 : T12                                where Γ /- M1 : T1, lcst(Γ, T1, (T11 -> T12)), Γ /- M2 : T2, Γ /- T2 <: T11.
Γ /- (let(X) = M1 in M2) : T                      where Γ /- M1 : T1, [X - bVar(T1) | Γ] /- M2 : T.
Γ /- fix(M1) : T12                                where Γ /- M1 : T1, lcst(Γ, T1, (T11 -> T12)), Γ /- T12 <: T11.
Γ /- inert(T) : T.
Γ /- (M1 as T) : T                                where Γ /- T :: '*', Γ /- M1 : T1, Γ /- T1 <: T.
Γ /- {Mf} : {Tf}                                  where maplist([L = M, L : T] >> (Γ /- M : T), Mf, Tf), !.
Γ /- M1 # L : T                                   where Γ /- M1 : T1, lcst(Γ, T1, {Tf}), member(L : T, Tf).
Γ /- ({(T1, M2)} as T) : T                        where Γ /- T :: '*', simplify(Γ, T, {some(Y :: TBound), T2}),
                                                        Γ /- T1 <: TBound, Γ /- M2 : S2, T2![(Y -> T1)] tsubst T2_, Γ /- S2 <: T2_.
Γ /- (let(TX, X) = M1 in M2) : T2                 where Γ /- M1 : T1, lcst(Γ, T1, {some(_ :: TBound), T11}),
                                                        [X - bVar(T11), TX - bTVar(TBound) | Γ] /- M2 : T2.
Γ /- (fn(TX <: T1) => M2) : (all(TX :: T1) => T2) where [TX - bTVar(T1) | Γ] /- M2 : T2, !.
Γ /- M1![T2] : T12_                               where Γ /- M1 : T1, lcst(Γ, T1, (all(X :: T11) => T12)),
                                                        Γ /- T2 <: T11, T12![(X -> T2)] tsubst T12_, !.
Γ /- M : _                                        where writeln(error : typeof(Γ, M)), fail. 

% ------------------------   MAIN  ------------------------

show(Γ, X, bName)       :- format('~w\n', [X]).
show(Γ, X, bVar(T))     :- format('~w : ~w\n', [X, T]).
show(Γ, X, bTVar(T))    :- format('~w <: ~w\n', [X, T]).
show(Γ, X, bMAbb(M, T)) :- format('~w : ~w\n', [X, T]).
show(Γ, X, bTAbb(T, K)) :- format('~w :: ~w\n', [X, K]).

check_someBind(TBody, {(_, T12)} as _, bMAbb(T12, TBody)).
check_someBind(TBody, _, bVar(TBody)).

run({(TX, X)} = M, Γ, [X - B, TX - bTVar(TBound) | Γ])
                                                :- !, tx(TX), x(X), m(M), !, !, Γ /- M : T,
                                                   simplify(Γ, T, {some(_ :: TBound), TBody}), Γ /- M ==>> M_,
                                                   check_someBind(TBody, M_, B), format('~w\n~w : ~w\n', [TX, X, TBody]).
run(type(X <: K) = T, Γ, [X - bTAbb(T, K) | Γ]) :- !, tx(X), k(K), t(T), Γ /- T :: K, show(Γ, X, bTAbb(T, K)).
run(type(X) = T, Γ, [X - bTAbb(T, K) | Γ])      :- !, tx(X), t(T), Γ /- T :: K, show(Γ, X, bTAbb(T, K)).
run(X <: K, Γ, [X - bTVar(K) | Γ])              :- !, tx(X), k(K), show(Γ, X, bTVar(K)).
run(X : T, Γ, [X - bVar(T) | Γ])                :- !, x(X), t(T), show(Γ, X, bVar(T)).
run(X : T = M, Γ, [X - bMAbb(M_, T) | Γ])       :- !, x(X), t(T), m(M), Γ /- M : T1, Γ /- T1 = T,
                                                   Γ /- M ==>> M_, show(Γ, X, bMAbb(M_, T)).
run(X = M, Γ, [X - bMAbb(M_, T) | Γ])           :- !, x(X), m(M), !, Γ /- M : T, !, Γ /- M ==>> M_, !, show(Γ, X, bMAbb(M_, T)).
run(M, Γ, Γ)                                    :- !, m(M), !, Γ /- M : T, !, Γ /- M ==>> M_, !, writeln(M_ : T).

run(Ls) :- foldl(run, Ls, [], _). 

% ------------------------   TEST  ------------------------

% lambda x:Top. x;
:- run([(fn(x : top) -> x)]). 
% (lambda x:Top. x) (lambda x:Top. x);
:- run([(fn(x : top) -> x) $ (fn(x : top) -> x)]). 
% (lambda x:Top->Top. x) (lambda x:Top. x);
:- run([(fn(x : (top -> top)) -> x) $ (fn(x : top) -> x)]). 
% (lambda r:{x:Top->Top}. r.x r.x) 
%   {x=lambda z:Top.z, y=lambda z:Top.z}; 
:- run([(fn(r : {[x : (top -> top)]}) -> r # x $ r # x) $ {[x = (fn(z : top) -> z), y = (fn(z : top) -> z)]}]). 
% "hello";
:- run(["hello"]). 
% unit;
:- run([unit]). 
% lambda x:A. x;
:- run([(fn(x : 'A') -> x)]). 
% let x=true in x;
:- run([(let(x) = true in x)]). 
% {x=true, y=false};
:- run([{[x = true, y = false]}]). 
% {x=true, y=false}.x;
:- run([{[x = true, y = false]} # x]). 
% {true, false};
:- run([{[1 = true, 2 = false]}]). 
% {true, false}.1;
:- run([{[1 = true, 2 = false]} # 1]). 
% if true then {x=true,y=false,a=false} else {y=false,x={},b=false};
:- run([if(true, {[x = true, y = false, a = false]}, {[y = false, x = {[]}, b = false]})]). 
% timesfloat 2.0 3.14159;
:- run([2.0 * 3.14159]). 
% lambda X. lambda x:X. x; 
:- run([(fn('X' <: top) => fn(x : 'X') -> x)]). 
% (lambda X. lambda x:X. x) [All X.X->X]; 
:- run([(fn('X' <: top) => fn(x : 'X') -> x)![(all('X' :: top) => 'X' -> 'X')]]). 
% lambda X<:Top->Top. lambda x:X. x x; 
:- run([(fn('X' <: (top -> top)) => fn(x : 'X') -> x $ x)]). 
% lambda x:Bool. x;
:- run([(fn(x : bool) -> x)]). 
% (lambda x:Bool->Bool. if x false then true else false) 
%   (lambda x:Bool. if x then false else true); 
:- run([(fn(x : (bool -> bool)) -> if(x $ false, true, false)) $ (fn(x : bool) -> if(x, false, true))]). 
% lambda x:Nat. succ x;
:- run([(fn(x : nat) -> succ(x))]). 
% (lambda x:Nat. succ (succ x)) (succ 0); 
:- run([(fn(x : nat) -> succ(succ(x))) $ succ(0)]). 
% T = Nat->Nat;
% lambda f:T. lambda x:Nat. f (f x);
:- run([type('T') = (nat -> nat), (fn(f : 'T') -> fn(x : nat) -> f $ (f $ x))]). 
% {*All Y.Y, lambda x:(All Y.Y). x} as {Some X,X->X};
:- run([{((all('Y' :: top) => 'Y'), (fn(x : (all('Y' :: top) => 'Y')) -> x))} as {some('X' :: top), ('X' -> 'X')}]). 
% {*Nat, {c=0, f=lambda x:Nat. succ x}}
%   as {Some X, {c:X, f:X->Nat}};
:- run([{(nat, {[c = 0, f = (fn(x : nat) -> succ(x))]})} as {some('X' :: top), {[c : 'X', f : ('X' -> nat)]}}]). 
% let {X,ops} = {*Nat, {c=0, f=lambda x:Nat. succ x}}
%               as {Some X, {c:X, f:X->Nat}}
% in (ops.f ops.c);
:- run([(let('X', ops) = {(nat, {[c = 0, f = (fn(x : nat) -> succ(x))]})} as {some('X' :: top), {[c : 'X', f : ('X' -> nat)]}} in ops # f $ ops # c)]).
:- run([ 
% Pair = lambda X. lambda Y. All R. (X->Y->R) -> R;
type('Pair') = (fn('X' :: '*') => fn('Y' :: '*') => all('R' :: top) => ('X' -> 'Y' -> 'R') -> 'R'),  
% pair = lambda X.lambda Y.lambda x:X.lambda y:Y.lambda R.lambda p:X->Y->R.p x y;
pair = (fn('X' <: top) => fn('Y' <: top) => fn(x : 'X') -> fn(y : 'Y') -> fn('R' <: top) => fn(p : ('X' -> 'Y' -> 'R')) -> p $ x $ y),  
% fst = lambda X.lambda Y.lambda p:Pair X Y.p [X] (lambda x:X.lambda y:Y.x);
fst = (fn('X' <: top) => fn('Y' <: top) => fn(p : 'Pair' $ 'X' $ 'Y') -> p!['X'] $ (fn(x : 'X') -> fn(y : 'Y') -> x)),  
% snd = lambda X.lambda Y.lambda p:Pair X Y.p [Y] (lambda x:X.lambda y:Y.y);
snd = (fn('X' <: top) => fn('Y' <: top) => fn(p : 'Pair' $ 'X' $ 'Y') -> p!['Y'] $ (fn(x : 'X') -> fn(y : 'Y') -> y)),  
% pr = pair [Nat] [Bool] 0 false;
pr = pair![nat]![bool] $ 0 $ false, fst![nat]![bool] $ pr, snd![nat]![bool] $ pr,  

% List = lambda X. All R. (X->R->R) -> R -> R; 
type('List') = (fn('X' :: '*') => all('R' :: top) => ('X' -> 'R' -> 'R') -> 'R' -> 'R'),  

% diverge =
% lambda X.
%   lambda _:Unit.
%   fix (lambda x:X. x);
diverge = (fn('X' <: top) => fn('_' : unit) -> fix((fn(x : 'X') -> x))),  
% nil = lambda X.
%       (lambda R. lambda c:X->R->R. lambda n:R. n)
%       as List X; 
nil = (fn('X' <: top) => (fn('R' <: top) => fn(c : ('X' -> 'R' -> 'R')) -> fn(n : 'R') -> n) as 'List' $ 'X'),  
% cons = 
% lambda X.
%   lambda hd:X. lambda tl: List X.
%      (lambda R. lambda c:X->R->R. lambda n:R. c hd (tl [R] c n))
%      as List X; 
cons = (fn('X' <: top) => fn(hd : 'X') -> fn(tl : 'List' $ 'X') -> (fn('R' <: top) => fn(c : ('X' -> 'R' -> 'R')) -> fn(n : 'R') -> c $ hd $ (tl!['R'] $ c $ n)) as 'List' $ 'X'),  
% isnil =  
% lambda X. 
%   lambda l: List X. 
%     l [Bool] (lambda hd:X. lambda tl:Bool. false) true; 
isnil = (fn('X' <: top) => fn(l : 'List' $ 'X') -> l![bool] $ (fn(hd : 'X') -> fn(tl : bool) -> false) $ true),  
% head = 
% lambda X. 
%   lambda l: List X. 
%     (l [Unit->X] (lambda hd:X. lambda tl:Unit->X. lambda _:Unit. hd) (diverge [X]))
%     unit; 
head = (fn('X' <: top) => fn(l : 'List' $ 'X') -> l![(unit -> 'X')] $ (fn(hd : 'X') -> fn(tl : (unit -> 'X')) -> fn('_' : unit) -> hd) $ (diverge!['X']) $ unit),  
% tail =
% lambda X.
%   lambda l: List X.
%     (fst [List X] [List X] (
%       l [Pair (List X) (List X)]
%         (lambda hd: X. lambda tl: Pair (List X) (List X). 
%           pair [List X] [List X] 
%             (snd [List X] [List X] tl)  
%             (cons [X] hd (snd [List X] [List X] tl))) 
%         (pair [List X] [List X] (nil [X]) (nil [X]))))
%     as List X; 
tail = (fn('X' <: top) => fn(l : 'List' $ 'X') -> fst!['List' $ 'X']!['List' $ 'X'] $ (l!['Pair' $ ('List' $ 'X') $ ('List' $ 'X')] $ (fn(hd : 'X') -> fn(tl : 'Pair' $ ('List' $ 'X') $ ('List' $ 'X')) -> pair!['List' $ 'X']!['List' $ 'X'] $ (snd!['List' $ 'X']!['List' $ 'X'] $ tl) $ (cons!['X'] $ hd $ (snd!['List' $ 'X']!['List' $ 'X'] $ tl))) $ (pair!['List' $ 'X']!['List' $ 'X'] $ (nil!['X']) $ (nil!['X']))) as 'List' $ 'X')]).

:- halt.

高階多相で有界量化したもののフルセット

fullfomsubref

プログラムの全体を見る
fullfomsubref.pl
:- discontiguous((\-)/2).
:- discontiguous((/-)/2).
:- op(1200, xfx, ['--', where]).
:- op(1100, xfy, [in]).
:- op(1050, xfy, ['=>']).
:- op(920, xfx, ['==>', '==>>', '<:']).
:- op(910, xfx, ['/-', '\\-']).
:- op(600, xfy, ['::', as]).
:- op(500, yfx, ['$', !, tsubst, tsubst2, subst, subst2, tmsubst, tmsubst2, '<-']).
:- op(400, yfx, ['#']).
term_expansion((A where B), (A :- B)).
:- op(920, xfx, ['<:']).
:- op(600, xfy, ['::']).
:- style_check(- singleton). 

% ------------------------   SYNTAX  ------------------------

:- use_module(rtg).
w ::= bool | nat | unit | float | string | top | true | false | error. % キーワード:

syntax(x). x(X) :- \+ w(X), atom(X), (sub_atom(X, 0, 1, _, P), char_type(P, lower) ; P = '_'). % 識別子:
syntax(tx). tx(TX) :- atom(TX), sub_atom(TX, 0, 1, _, P), char_type(P, upper). % 型変数:
syntax(floatl). floatl(F) :- float(F).     % 浮動小数点数
syntax(stringl). stringl(F) :- string(F).  % 文字列
syntax(integer).                           % 整数
syntax(l). l(L) :- atom(L) ; integer(L).   % ラベル
list(A) ::= [] | [A | list(A)].            % リスト

k ::=                                           % カインド:
      '*'                                       % 真の型のカインド
    | (k => k)                                  % 演算子のカインド
    .
t ::=                                           % 型:
      bool                                      % ブール値型
    | nat                                       % 自然数型
    | unit                                      % Unit型
    | float                                     % 浮動小数点数型
    | string                                    % 文字列型
    | top                                       % 最大の型
    | bot                                       % 最小の型
    | tx                                        % 型変数
    | (t -> t)                                  % 関数の型
    | {list(l : t)}                             % レコードの型
    | [list(x : t)]                             % バリアント型
    | ref(t)                                    % 参照セルの型
    | source(t) | sink(t) | (all(tx :: t) => t) % 全称型
    | {some(tx :: t), t}                        % 存在型
    | (fn(tx :: k) => t)                        % 型抽象
    | t $ t                                     % 関数適用
    .
m ::=                                           % 項:
      true                                      % 真
    | false                                     % 偽
    | if(m, m, m)                               % 条件式
    | 0                                         % ゼロ
    | succ(m)                                   % 後者値
    | pred(m)                                   % 前者値
    | iszero(m)                                 % ゼロ判定
    | unit                                      % 定数unit
    | floatl                                    % 浮動小数点数値
    | m * m                                     % 浮動小数点乗算
    | stringl                                   % 文字列定数
    | x                                         % 変数
    | (fn(x : t) -> m)                          % ラムダ抽象
    | m $ m                                     % 関数適用
    | (let(x) = m in m)                         % let束縛
    | fix(m)                                    % mの不動点
    | inert(t) | m as t                         % 型指定
    | {list(l = m)}                             % レコード
    | m # l                                     % 射影
    | case(m, list(x = (x, m)))                 % 場合分け
    | tag(x, m) as t                            % タグ付け
    | loc(integer)                              % ストアでの位置
    | ref(m)                                    % 参照の生成
    | '!'(m)                                    % 参照先の値の取り出し
    | m := m                                    % 破壊的代入
    | error                                     % 実行時エラー
    | try(m, m)                                 % エラーの捕捉
    | {(t, m)} as t                             % パッケージ化
    | (let(tx, x) = m in m)                     % アンパッケージ化
    | (fn(tx <: t) => m)                        % 型抽象
    | m![t]                                     % 型適用
    .
n ::=                                           % 数値:
      0                                         % ゼロ
    | succ(n)                                   % 後者値
    .
v ::=                                           % 値:
      true                                      % 真
    | false                                     % 偽
    | n                                         % 数値
    | unit                                      % 定数unit
    | floatl                                    % 浮動小数点数値
    | stringl                                   % 文字列定数
    | (fn(x : t) -> m)                          % ラムダ抽象
    | {list(l = v)}                             % レコード
    | tag(x, v) as t                            % タグ付け
    | loc(integer)                              % ストアでの位置
    | {(t, v)} as t                             % パッケージ化
    | (fn(tx <: t) => m)                        % 型抽象
    . 

% ------------------------   SUBSTITUTION  ------------------------

maplist2(_, [], []).
maplist2(F, [X | Xs], [Y | Ys]) :- call(F, X, Y), maplist2(F, Xs, Ys).

bool![(J -> S)] tsubst bool.
nat![(J -> S)] tsubst nat.
unit![(J -> S)] tsubst unit.
float![(J -> S)] tsubst float.
string![(J -> S)] tsubst string.
top![(J -> S)] tsubst top.
J![(J -> S)] tsubst S                                           :- tx(J).
X![(J -> S)] tsubst X                                           :- tx(X).
(T1 -> T2)![(J -> S)] tsubst (T1_ -> T2_)                       :- T1![(J -> S)] tsubst T1_, T2![(J -> S)] tsubst T2_.
{Mf}![(J -> S)] tsubst {Mf_}                                    :- maplist([L : T, L : T_] >> (T![(J -> S)] tsubst T_), Mf, Mf_).
[Mf]![(J -> S)] tsubst [Mf_]                                    :- maplist([L : T, L : T_] >> (T![(J -> S)] tsubst T_), Mf, Mf_).
ref(T1)![(J -> S)] tsubst ref(T1_)                              :- T1![(J -> S)] tsubst T1_.
source(T1)![(J -> S)] tsubst source(T1_)                        :- T1![(J -> S)] tsubst T1_.
sink(T1)![(J -> S)] tsubst sink(T1_)                            :- T1![(J -> S)] tsubst T1_.
(all(TX :: T1) => T2)![(J -> S)] tsubst (all(TX :: T1_) => T2_) :- T1![TX, (J -> S)] tsubst2 T1_, T2![TX, (J -> S)] tsubst2 T2_.
{some(TX :: T1), T2}![(J -> S)] tsubst {some(TX :: T1_), T2_}   :- T1![TX, (J -> S)] tsubst2 T1_, T2![TX, (J -> S)] tsubst2 T2_.
(fn(TX :: K) => T2)![(J -> S)] tsubst (fn(TX :: K) => T2_)      :- T2![TX, (J -> S)] tsubst2 T2_.
T1 $ T2![(J -> S)] tsubst (T1_ $ T2_)                           :- T1![(J -> S)] tsubst T1_, T2![(J -> S)] tsubst T2_.
T![X, (X -> S)] tsubst2 T.
T![X, (J -> S)] tsubst2 T_                                      :- T![(J -> S)] tsubst T_.

true![(J -> M)] subst true.
false![(J -> M)] subst false.
if(M1, M2, M3)![(J -> M)] subst if(M1_, M2_, M3_)          :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_,
                                                              M3![(J -> M)] subst M3_.
0![(J -> M)] subst 0.
succ(M1)![(J -> M)] subst succ(M1_)                        :- M1![(J -> M)] subst M1_.
pred(M1)![(J -> M)] subst pred(M1_)                        :- M1![(J -> M)] subst M1_.
iszero(M1)![(J -> M)] subst iszero(M1_)                    :- M1![(J -> M)] subst M1_.
unit![(J -> M)] subst unit.
F1![(J -> M)] subst F1                                     :- float(F1).
M1 * M2![(J -> M)] subst M1_ * M2_                         :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_.
X![(J -> M)] subst X                                       :- string(X).
J![(J -> M)] subst M                                       :- x(J).
X![(J -> M)] subst X                                       :- x(X).
(fn(X : T1) -> M2)![(J -> M)] subst (fn(X : T1) -> M2_)    :- M2![X, (J -> M)] subst2 M2_.
M1 $ M2![(J -> M)] subst (M1_ $ M2_)                       :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_.
(let(X) = M1 in M2)![(J -> M)] subst (let(X) = M1_ in M2_) :- M1![(J -> M)] subst M1_, M2![X, (J -> M)] subst2 M2_.
fix(M1)![(J -> M)] subst fix(M1_)                          :- M1![(J -> M)] subst M1_.
inert(T1)![(J -> M)] subst inert(T1).
(M1 as T1)![(J -> M)] subst (M1_ as T1)                    :- M1![(J -> M)] subst M1_.
{Mf}![(J -> M)] subst {Mf_}                                :- maplist([L = Mi, L = Mi_] >> (Mi![(J -> M)] subst Mi_), Mf, Mf_).
M1 # L![(J -> M)] subst M1_ # L                            :- M1![(J -> M)] subst M1_.
(tag(L, M1) as T1)![(J -> M)] subst (tag(L, M1_) as T1)    :- M1![(J -> M)] subst M1_.
case(M1, Cases)![(J -> M)] subst case(M1_, Cases_)         :- M1![(J -> M)] subst M1_,
                                                              maplist([L = (X, M2), L = (X, M2_)] >> (M2![(J -> M)] subst M2_), Cases, Cases_).
ref(M1)![(J -> M)] subst ref(M1_)                          :- M1![(J -> M)] subst M1_.
'!'(M1)![(J -> M)] subst '!'(M1_)                          :- M1![(J -> M)] subst M1_.
(M1 := M2)![(J -> M)] subst (M1_ := M2_)                   :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_.
loc(L)![(J -> M)] subst loc(L).
try(M1, M2)![(J -> M)] subst try(M1_, M2_)                 :- M1![(J -> M)] subst M1_, M2![(J -> M)] subst M2_.
error![(J -> M)] subst error.
(fn(TX <: T) => M2)![(J -> M)] subst (fn(TX <: T) => M2_)  :- M2![(J -> M)] subst M2_.
M1![T2]![(J -> M)] subst (M1_![T2])                        :- M1![(J -> M)] subst M1_.
({(T1, M2)} as T3)![(J -> M)] subst ({(T1, M2_)} as T3)    :- M2![(J -> M)] subst M2_.
(let(TX, X) = M1 in M2)![(J -> M)] subst (let(TX, X) = M1_ in M2_)
                                                           :- M1![X, (J -> M)] subst2 M1_, M2![X, (J -> M)] subst2 M2_.
S![(J -> M)] subst _                                       :- writeln(error : subst(J, M, S)), fail.
S![J, (J -> M)] subst2 S.
S![X, (J -> M)] subst2 M_                                  :- S![(J -> M)] subst M_.

true![(J -> S)] tmsubst true.
false![(J -> S)] tmsubst false.
if(M1, M2, M3)![(J -> S)] tmsubst if(M1_, M2_, M3_)            :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_, M3![(J -> S)] tmsubst M3_.
0![(J -> S)] tmsubst 0.
succ(M1)![(J -> S)] tmsubst succ(M1_)                          :- M1![(J -> S)] tmsubst M1_.
pred(M1)![(J -> S)] tmsubst pred(M1_)                          :- M1![(J -> S)] tmsubst M1_.
iszero(M1)![(J -> S)] tmsubst iszero(M1_)                      :- M1![(J -> S)] tmsubst M1_.
unit![(J -> M)] tmsubst unit.
F1![(J -> M)] tmsubst F1                                       :- float(F1).
M1 * M2![(J -> M)] tmsubst M1_ * M2_                           :- M1![(J -> M)] tmsubst M1_, M2![(J -> M)] tmsubst M2_.
X![(J -> M)] tmsubst X                                         :- string(X).
X![(J -> S)] tmsubst X                                         :- x(X).
(fn(X : T1) -> M2)![(J -> S)] tmsubst (fn(X : T1_) -> M2_)     :- T1![(J -> S)] tsubst T1_, M2![(J -> S)] tmsubst M2_.
M1 $ M2![(J -> S)] tmsubst (M1_ $ M2_)                         :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_.
(let(X) = M1 in M2)![(J -> S)] tmsubst (let(X) = M1_ in M2_)   :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_.
fix(M1)![(J -> M)] tmsubst fix(M1_)                            :- M1![(J -> M)] tmsubst M1_.
inert(T1)![(J -> M)] tmsubst inert(T1).
(M1 as T1)![(J -> S)] tmsubst (M1_ as T1_)                     :- M1![(J -> S)] tmsubst M1_, T1![(J -> S)] tsubst T1_.
{Mf}![(J -> M)] tmsubst {Mf_}                                  :- maplist([L = Mi, L = Mi_] >> (Mi![(J -> M)] tmsubst Mi_), Mf, Mf_).
M1 # L![(J -> M)] tmsubst M1_ # L                              :- M1![(J -> M)] tmsubst M1_.
(tag(L, M1) as T1)![(J -> S)] tmsubst (tag(L, M1_) as T1_)     :- M1![(J -> S)] tmsubst M1_, T1![(J -> S)] tsubst T1_.
case(M1, Cases)![(J -> S)] tmsubst case(M1_, Cases_)           :- M1![(J -> S)] tmsubst M1_, maplist([L = (X, M2), L = (X, M2_)] >> (M2![(J -> S)] subst M2_), Cases, Cases_).
ref(M1)![(J -> S)] tmsubst ref(M1_)                            :- M1![(J -> S)] tmsubst M1_.
'!'(M1)![(J -> S)] tmsubst '!'(M1_)                            :- M1![(J -> S)] tmsubst M1_.
(M1 := M2)![(J -> S)] tmsubst (M1_ := M2_)                     :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_.
loc(L)![(J -> S)] tmsubst loc(L).
try(M1, M2)![(J -> S)] tmsubst try(M1_, M2_)                   :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_.
error![(J -> S)] tmsubst error.
(fn(TX <: T1) => M2)![(J -> S)] tmsubst (fn(TX <: T1_) => M2_) :- T1![TX, (J -> S)] tsubst2 T1_, M2![TX, (J -> S)] tmsubst2 M2_.
M1![T2]![(J -> S)] tmsubst (M1_![T2_])                         :- M1![(J -> S)] tmsubst M1_, T2![(J -> S)] tsubst T2_.
({(T1, M2)} as T3)![(J -> S)] tmsubst ({(T1_, M2_)} as T3_)    :- T1![(J -> S)] tsubst T1_, M2![(J -> S)] tmsubst M2_, T3![(J -> S)] tsubst T3_.
(let(TX, X) = M1 in M2)![(J -> S)] tmsubst (let(TX, X) = M1_ in M2_)
                                                               :- M1![(J -> S)] tmsubst M1_, M2![(J -> S)] tmsubst M2_.
T![X, (X -> S)] tmsubst2 T.
T![X, (J -> S)] tmsubst2 T_                                    :- T![(J -> S)] tmsubst T_.

getb(Γ, X, B) :- member(X - B, Γ).
gett(Γ, X, T) :- getb(Γ, X, bVar(T)).
gett(Γ, X, T) :- getb(Γ, X, bMAbb(_, T)). 
%gett(Γ,X,_) :- writeln(error:gett(Γ,X)),fail.

maketop('*', top).
maketop((K1 => K2), (fn('_' :: K1) => K2_)) :- maketop(K2, K2_). 

% ------------------------   EVALUATION  ------------------------

extendstore(St, V1, Len, St_)            :- length(St, Len), append(St, [V1], St_).
lookuploc(St, L, R)                      :- nth0(L, St, R).
updatestore([_ | St], 0, V1, [V1 | St]).
updatestore([V | St], N1, V1, [V | St_]) :- N is N1 - 1, updatestore(St, N, V1, St_).

eval_context(if(M1, M2, M3), ME, if(MH, M2, M3), H)                   :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(succ(M1), ME, succ(MH), H)                               :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(pred(M1), ME, pred(MH), H)                               :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(iszero(M1), ME, iszero(MH), H)                           :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(M1 * M2, ME, MH * M2, H)                                 :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(V1 * M2, ME, V1 * MH, H)                                 :- \+ v(M2), eval_context(M1, ME, MH, H).
eval_context(M1 $ M2, ME, MH $ M2, H)                                 :- \+ v(M1) -> eval_context(M1, ME, MH, H).
eval_context(V1 $ M2, ME, V1 $ MH, H)                                 :- \+ v(M2) -> eval_context(M2, ME, MH, H).
eval_context((let(X) = M1 in M2), ME, (let(X) = MH in M2), H)         :- \+ v(M1) -> eval_context(M1, ME, MH, H).
eval_context(fix(M1), ME, fix(MH), H)                                 :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(M1 as T, ME, MH as T, H)                                 :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(M1 # L, ME, MH # L, H)                                   :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(tag(L, M1) as T, ME, tag(L, MH) as T, H)                 :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(case(M1, Branches), ME, case(MH, Branches), H)           :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(ref(M1), ME, ref(MH), H)                                 :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context('!'(M1), ME, '!'(MH), H)                                 :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(M1 := M2, ME, MH := M2, H)                               :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context(V1 := M2, ME, V1 := MH, H)                               :- \+ v(M2), eval_context(M2, ME, MH, H).
eval_context(M1![T], ME, MH![T], H)                                   :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context({(T1, M2)} as T3, ME, {(T1, MH)} as T3, H)               :- \+ v(M2), eval_context(M2, ME, MH, H).
eval_context((let(TX, X) = M1 in M2), ME, (let(TX, X) = MH in M2), H) :- \+ v(M1), eval_context(M1, ME, MH, H).
eval_context({Mf}, ME, {MH}, H)                                       :- \+ v({Mf}), e(Mf, ME, MH, H).
eval_context(try(M1, M2), M1, try(H, M2), H).
eval_context(M1, M1, H, H)                                            :- \+ v(M1).

e([L = M | Mf], M, [L = M_ | Mf], M_)  :- \+ v(M).
e([L = M | Mf], M1, [L = M | Mf_], M_) :- v(M), e(Mf, M1, Mf_, M_).

Γ / St /- if(true, M2, M3) ==> M2 / St.
Γ / St /- if(false, M2, M3) ==> M3 / St.
Γ / St /- pred(0) ==> 0 / St.
Γ / St /- pred(succ(NV1)) ==> NV1 / St                        where n(NV1).
Γ / St /- iszero(0) ==> true / St.
Γ / St /- iszero(succ(NV1)) ==> false / St                    where n(NV1).
Γ / St /- F1 * F2 ==> F3 / St                                 where float(F1), float(F2), F3 is F1 * F2.
Γ / St /- X ==> M / St                                        where x(X), getb(Γ, X, bMAbb(M, _)).
Γ / St /- (fn(X : _) -> M12) $ V2 ==> R / St                  where v(V2), M12![(X -> V2)] subst R.
Γ / St /- (let(X) = V1 in M2) ==> M2_ / St                    where v(V1), M2![(X -> V1)] subst M2_.
Γ / St /- fix((fn(X : T11) -> M12)) ==> M / St                where M12![(X -> fix((fn(X : T11) -> M12)))] subst M.
Γ / St /- V1 as _ ==> V1 / St                                 where v(V1).
Γ / St /- {Mf} # L ==> M / St                                 where member(L = M, Mf).
Γ / St /- case(tag(L, V11) as _, Bs) ==> M_ / St              where v(V11), member(L = (X, M), Bs), M![(X -> V11)] subst M_.
Γ / St /- ref(V1) ==> loc(L) / St_                            where v(V1), extendstore(St, V1, L, St_).
Γ / St /- '!'(loc(L)) ==> V1 / St                             where lookuploc(St, L, V1).
Γ / St /- (loc(L) := V2) ==> unit / St_                       where v(V2), updatestore(St, L, V2, St_).
Γ / St /- (fn(X <: _) => M11)![T2] ==> M11_ / St              where M11![(X -> T2)] tmsubst M11_.
Γ / St /- (let(_, X) = {(T11, V12)} as _ in M2) ==> M2__ / St where v(V12), subst(X, V12, M2_), M2_![(X -> T11)] tmsubst M2__.
Γ / St /- try(error, M2) ==> M2 / St.
Γ / St /- try(V1, M2) ==> V1 / St                             where v(V1).
Γ / St /- try(M1, M2) ==> try(M1_, M2) / St_                  where Γ / St /- M1 ==> M1_ / St_.
Γ / St /- error ==> _ / _                                     where !, fail.
Γ / St /- M ==> error / St                                    where eval_context(M, error, _, _), !.
Γ / St /- M ==> M_ / St_                                      where eval_context(M, ME, M_, H), M \= ME, Γ / St /- ME ==> H / St_.

Γ / St /- M ==>> M_ / St_ where Γ / St /- M ==> M1 / St1, Γ / St1 /- M1 ==>> M_ / St_.
Γ / St /- M ==>> M / St. 

% ------------------------   KINDING  ------------------------

gettabb(Γ, X, T)                        :- getb(Γ, X, bTAbb(T, _)).
compute(Γ, X, T)                        :- tx(X), gettabb(Γ, X, T).
compute(Γ, (fn(X :: _) => T12) $ T2, T) :- T12![(X -> T2)] tsubst T.
simplify(Γ, T1 $ T2, T_)                :- simplify(Γ, T1, T1_), simplify2(Γ, T1_ $ T2, T_).
simplify(Γ, T, T_)                      :- simplify2(Γ, T, T_).
simplify2(Γ, T, T_)                     :- compute(Γ, T, T1), simplify(Γ, T1, T_).
simplify2(Γ, T, T).

Γ /- S = T :- simplify(Γ, S, S_), simplify(Γ, T, T_), Γ /- S_ == T_.
Γ /- bool == bool.
Γ /- nat == nat.
Γ /- unit == unit.
Γ /- float == float.
Γ /- string == string.
Γ /- top == top.
Γ /- X == T                                        :- tx(X), gettabb(Γ, X, S), Γ /- S = T.
Γ /- S == X                                        :- tx(X), gettabb(Γ, X, T), Γ /- S = T.
Γ /- X == X                                        :- tx(X).
Γ /- (S1 -> S2) == (T1 -> T2)                      :- Γ /- S1 = T1, Γ /- S2 = T2.
Γ /- {Sf} == {Tf}                                  :- length(Sf, Len), length(Tf, Len),
                                                      maplist([L : T] >> (member(L : S, Sf), Γ /- S = T), Tf).
Γ /- [Sf] == [Tf]                                  :- length(Sf, Len), length(Tf, Len),
                                                      maplist2([L : S, L : T] >> (Γ /- S = T), Sf, Tf).
Γ /- ref(S) == ref(T)                              :- Γ /- S = T.
Γ /- source(S) == source(T)                        :- Γ /- S = T.
Γ /- sink(S) == sink(T)                            :- Γ /- S = T.
Γ /- (all(TX :: S1) => S2) == (all(_ :: T1) => T2) :- Γ /- S1 = T1, [TX - bName | Γ] /- S2 = T2.
Γ /- {some(TX :: S1), S2} == {some(_ :: T1), T2}   :- Γ /- S1 = T1, [TX - bName | Γ] /- S2 = T2.
Γ /- (fn(TX :: K1) => S2) == (fn(_ :: K1) => T2)   :- [TX - bName | g] /- S2 = T2.
Γ /- S1 $ S2 == T1 $ T2                            :- Γ /- S1 = T1, Γ /- S2 = T2.

Γ /- T :: K                            where Γ \- T :: K, !.
Γ /- T :: K                            where writeln(error : kindof(T, K)), fail.
Γ \- X :: '*'                          where tx(X), \+ member(X - _, Γ).
Γ \- X :: K                            where tx(X), getb(Γ, X, bTVar(T)), Γ /- T :: K, !.
Γ \- X :: K                            where tx(X), !, getb(Γ, X, bTAbb(_, K)).
Γ \- (T1 -> T2) :: '*'                 where !, Γ /- T1 :: '*', Γ /- T2 :: '*'.
Γ \- {Tf} :: '*'                       where maplist([L : S] >> (Γ /- S :: '*'), Tf).
Γ \- [Tf] :: '*'                       where maplist([L : S] >> (Γ /- S :: '*'), Tf).
Γ \- ref(T) :: '*'                     where Γ /- T :: '*'.
Γ \- source(T) :: '*'                  where Γ /- T :: '*'.
Γ \- sink(T) :: '*'                    where Γ /- T :: '*'.
Γ \- (all(TX :: T1) => T2) :: '*'      where !, [TX - bTVar(T1) | Γ] /- T2 :: '*'.
Γ \- (fn(TX :: K1) => T2) :: (K1 => K) where !, maketop(K1, T1), [TX - bTVar(T1) | Γ] /- T2 :: K.
Γ \- T1 $ T2 :: K12                    where !, Γ /- T1 :: (K11 => K12), Γ /- T2 :: K11.
Γ \- {some(TX :: T1), T2} :: '*'       where !, [TX - bTVar(T1) | Γ] /- T2 :: '*'.
Γ \- T :: '*'. 

% ------------------------   SUBTYPING  ------------------------

promote(Γ, X, T)          :- tx(X), getb(Γ, X, bTVar(T)).
promote(Γ, S $ T, S_ $ T) :- promote(Γ, S, S_).

Γ /- S <: T                                        where Γ /- S = T.
Γ /- S <: T                                        where simplify(Γ, S, S_), simplify(Γ, T, T_), Γ \- S_ <: T_.
Γ \- _ <: top.
Γ \- bot <: _.
Γ \- X <: T                                        where tx(X), promote(Γ, X, S), Γ /- S <: T.
Γ \- (S1 -> S2) <: (T1 -> T2)                      where Γ /- T1 <: S1, Γ /- S2 <: T2.
Γ \- {SF} <: {TF}                                  where maplist([L : T] >> (member(L : S, SF), Γ /- S <: T), TF).
Γ \- [SF] <: [TF]                                  where maplist([L : S] >> (member(L : T, TF), Γ /- S <: T), SF).
Γ \- ref(S) <: ref(T)                              where Γ /- S <: T, Γ /- T <: S.
Γ \- ref(S) <: source(T)                           where Γ /- S <: T.
Γ \- source(S) <: source(T)                        where Γ /- S <: T.
Γ \- ref(S) <: sink(T)                             where Γ /- T <: S.
Γ \- sink(S) <: sink(T)                            where Γ /- T <: S.
Γ \- T1 $ T2 <: T                                  where promote(Γ, T1 $ T2, S), Γ /- S <: T.
Γ \- (fn(TX :: K1) => S2) <: (fn(_ :: K1) => T2)   where maketop(K1, T1), [TX - bTVar(T1) | Γ] /- S2 <: T2.
Γ \- (all(TX :: S1) => S2) <: (all(_ :: T1) => T2) where Γ /- S1 <: T1, Γ /- T1 <: S1, [TX - bTVar(T1) | Γ] /- S2 <: T2.
Γ \- {some(TX :: S1), S2} <: {some(_ :: T1), T2}   where Γ /- S1 <: T1, Γ /- T1 <: S1, [TX - bTVar(T1) | Γ] /- S2 <: T2.

Γ /- S /\ T : T                            :- Γ /- S <: T.
Γ /- S /\ T : S                            :- Γ /- T <: S.
Γ /- S /\ T : R                            :- simplify(Γ, S, S_), simplify(Γ, T, T_), Γ \- S_ /\ T_ : R.
Γ \- {SF} /\ {TF} : {UF_}                  :- include([L : _] >> member(L : _, TF), SF, UF),
                                              maplist([L : S, L : T_] >> (member(L : T, TF), Γ /- S /\ T : T_), UF, UF_).
Γ \- (all(TX :: S1) => S2) /\ (all(_ :: T1) => T2) : (all(TX :: S1) => T2_)
                                           :- Γ /- S1 <: T1, Γ /- T1 <: S1, [TX - bTVar(T1) | Γ] /- T1 /\ T2 : T2_.
Γ \- (all(TX :: S1) => S2) /\ (all(_ :: T1) => T2) : top.
Γ \- (S1 -> S2) /\ (T1 -> T2) : (S_ -> T_) :- Γ /- S1 \/ T1 : S_, Γ /- S2 /\ T2 : T_.
Γ \- ref(S) /\ ref(T) : ref(S)             :- Γ /- S <: T, Γ /- T <: S.
Γ \- ref(S) /\ ref(T) : source(T_)         :- /* Warning: this is incomplete... */ Γ /- S /\ T : T_.
Γ \- source(S) /\ source(T) : source(T_)   :- Γ /- S /\ T : T_.
Γ \- ref(S) /\ source(T) : source(T_)      :- Γ /- S /\ T : T_.
Γ \- source(S) /\ ref(T) : source(T_)      :- Γ /- S /\ T : T_.
Γ \- sink(S) /\ sink(T) : sink(T_)         :- Γ /- S \/ T : T_.
Γ \- ref(S) /\ sink(T) : sink(T_)          :- Γ /- S \/ T : T_.
Γ \- sink(S) /\ ref(T) : sink(T_)          :- Γ /- S \/ T : T_.
Γ \- _ /\ _ : top.

Γ /- S \/ T : S                            :- Γ /- S <: T.
Γ /- S \/ T : T                            :- Γ /- T <: S.
Γ /- S \/ T : R                            :- simplify(Γ, S, S_), simplify(Γ, T, T_), Γ \- S_ \/ T_ : R.
Γ \- {SF} \/ {TF} : {UF_}                  :- maplist([L : S, L : T_] >> (
                                                member(L : T, TF),
                                                Γ /- S \/ T : T_ ; T_ = S
                                              ), SF, SF_),
                                              include([L : _] >> (\+ member(L : _, SF)), TF, TF_),
                                              append(SF_, TF_, UF_).
Γ \- (all(TX :: S1) => S2) \/ (all(_ :: T1) => T2) : (all(TX :: S1) => T2_)
                                           :- Γ /- S1 <: T1, Γ /- T1 <: S1,
                                              [TX - bTVar(T1) | Γ] /- T1 \/ T2 : T2_.
Γ \- (S1 -> S2) \/ (T1 -> T2) : (S_ -> T_) :- Γ /- S1 /\ T1 : S_, Γ /- S2 \/ T2 : T_.
Γ \- ref(S) \/ ref(T) : ref(T)             :- Γ /- S <: T, Γ /- T <: S.
Γ \- ref(S) \/ ref(T) : source(T_)         :- Γ /- S \/ T : T_.
Γ \- source(S) \/ source(T) : source(T_)   :- Γ /- S \/ T : T_.
Γ \- ref(S) \/ source(T) : source(T_)      :- Γ /- S \/ T : T_.
Γ \- source(S) \/ ref(T) : source(T_)      :- Γ /- S \/ T : T_.
Γ \- sink(S) \/ sink(T) : sink(T_)         :- Γ /- S /\ T : T_.
Γ \- ref(S) \/ sink(T) : sink(T_)          :- Γ /- S /\ T : T_.
Γ \- sink(S) \/ ref(T) : sink(T_)          :- Γ /- S /\ T : T_.
Γ \- _ \/ _ : bot. 

% ------------------------   TYPING  ------------------------

lcst(Γ, S, T) :- simplify(Γ, S, S_), lcst2(Γ, S_, T).
lcst2(Γ, S, T) :- promote(Γ, S, S_), lcst(Γ, S_, T).
lcst2(Γ, T, T). 

%typeof(Γ,M,_) :- writeln(typeof(Γ,M)),fail.

Γ /- true : bool.
Γ /- false : bool.
Γ /- if(M1, M2, M3) : T                           where Γ /- M1 : T1, Γ /- T1 <: bool,
                                                        Γ /- M2 : T2, Γ /- M3 : T3, Γ /- T2 /\ T3 : T.
Γ /- 0 : nat.
Γ /- succ(M1) : nat                               where Γ /- M1 : T1, Γ /- T1 <: nat.
Γ /- pred(M1) : nat                               where Γ /- M1 : T1, Γ /- T1 <: nat.
Γ /- iszero(M1) : bool                            where Γ /- M1 : T1, Γ /- T1 <: nat.
Γ /- unit : unit.
Γ /- F1 : float                                   where float(F1).
Γ /- M1 * M2 : float                              where Γ /- M1 : T1, Γ /- T1 <: float, Γ /- M2 : T2, Γ /- T2 <: float.
Γ /- X : string                                   where string(X).
Γ /- X : T                                        where x(X), !, gett(Γ, X, T).
Γ /- (fn(X : T1) -> M2) : (T1 -> T2_)             where Γ /- T1 :: '*', [X - bVar(T1) | Γ] /- M2 : T2_, !.
Γ /- M1 $ M2 : T12                                where Γ /- M1 : T1, lcst(Γ, T1, (T11 -> T12)), !, Γ /- M2 : T2, Γ /- T2 <: T11.
Γ /- M1 $ M2 : bot                                where !, Γ /- M1 : T1, lcst(Γ, T1, bot), Γ /- M2 : T2.
Γ /- (let(X) = M1 in M2) : T                      where Γ /- M1 : T1, [X - bVar(T1) | Γ] /- M2 : T.
Γ /- fix(M1) : T12                                where Γ /- M1 : T1, lcst(Γ, T1, (T11 -> T12)), Γ /- T12 <: T11.
Γ /- inert(T) : T.
Γ /- (M1 as T) : T                                where Γ /- T :: '*', Γ /- M1 : T1, Γ /- T1 <: T.
Γ /- {Mf} : {Tf}                                  where maplist([L = M, L : T] >> (Γ /- M : T), Mf, Tf), !.
Γ /- M1 # L : T                                   where Γ /- M1 : T1, lcst(Γ, T1, {Tf}), member(L : T, Tf).
Γ /- (tag(Li, Mi) as T) : T                       where simplify(Γ, T, [Tf]), member(Li : Te, Tf), Γ /- Mi : T_, Γ /- T_ <: Te.
Γ /- case(M, Cases) : bot                         where Γ /- M : T, lcst(Γ, T, bot),
                                                        maplist([L = _] >> member(L : _, Tf), Cases),
                                                        maplist([Li = (Xi, Mi)] >> (
                                                          member(Li : Ti, Tf),
                                                          [Xi - bVar(Ti) | Γ] /- Mi : Ti_
                                                        ), Cases).
Γ /- case(M, Cases) : T_                          where Γ /- M : T, lcst(Γ, T, [Tf]),
                                                        maplist([L = _] >> member(L : _, Tf), Cases),
                                                        maplist([Li = (Xi, Mi), Ti_] >> (
                                                          member(Li : Ti, Tf),
                                                          [Xi - bVar(Ti) | Γ] /- Mi : Ti_
                                                        ), Cases, CaseTypes),
                                                        foldl([S, T1, U] >> (Γ /- S /\ T1 : U), CaseTypes, bot, T_).
Γ /- case(M, Cases) : _                           where writeln(error : typeof(Γ, case(M, Cases))), !, fail.
Γ /- ref(M1) : ref(T1)                            where Γ /- M1 : T1.
Γ /- '!'(M1) : T1                                 where Γ /- M1 : T, lcst(Γ, T, ref(T1)).
Γ /- '!'(M1) : bot                                where Γ /- M1 : T, lcst(Γ, T, bot).
Γ /- '!'(M1) : T1                                 where Γ /- M1 : T, lcst(Γ, T, source(T1)).
Γ /- (M1 := M2) : unit                            where Γ /- M1 : T, lcst(Γ, T, ref(T1)), Γ /- M2 : T2, Γ /- T2 <: T1.
Γ /- (M1 := M2) : bot                             where Γ /- M1 : T, lcst(Γ, T, bot), Γ /- M2 : _.
Γ /- (M1 := M2) : unit                            where Γ /- M1 : T, lcst(Γ, T, sink(T1)), Γ /- M2 : T2, subtyping(Γ, T2, T1).
Γ /- loc(l) : _                                   where !, fail.
Γ /- try(M1, M2) : T                              where Γ /- M1 : T1, Γ /- M2 : T2, Γ /- T1 /\ T2 : T.
Γ /- error : bot                                  where !.
Γ /- ({(T1, M2)} as T) : T                        where Γ /- T :: '*', simplify(Γ, T, {some(Y :: TBound), T2}),
                                                        Γ /- T1 <: TBound, Γ /- M2 : S2, T2![(Y -> T1)] tsubst T2_, Γ /- S2 <: T2_.
Γ /- (let(TX, X) = M1 in M2) : T2                 where Γ /- M1 : T1, lcst(Γ, T1, {some(_ :: TBound), T11}),
                                                        [X - bVar(T11), TX - bTVar(TBound) | Γ] /- M2 : T2.
Γ /- (fn(TX <: T1) => M2) : (all(TX :: T1) => T2) where [TX - bTVar(T1) | Γ] /- M2 : T2, !.
Γ /- M1![T2] : T12_                               where Γ /- M1 : T1, lcst(Γ, T1, (all(X :: T11) => T12)),
                                                        Γ /- T2 <: T11, T12![(X -> T2)] tsubst T12_. 
%typeof(Γ,M,_) :- writeln(error:typeof(Γ,M)),fail.

% ------------------------   MAIN  ------------------------

show(Γ, X, bName)       :- format('~w\n', [X]).
show(Γ, X, bVar(T))     :- format('~w : ~w\n', [X, T]).
show(Γ, X, bTVar(T))    :- format('~w <: ~w\n', [X, T]).
show(Γ, X, bMAbb(M, T)) :- format('~w : ~w\n', [X, T]).
show(Γ, X, bTAbb(T, K)) :- format('~w :: ~w\n', [X, K]).

check_someBind(TBody, {(_, T12)} as _, bMAbb(T12, TBody)).
check_someBind(TBody, _, bVar(TBody)).

run({(TX, X)} = M, (Γ, St), ([X - B, TX - bTVar(K) | Γ], St_))
                                                       :- tx(TX), x(X), m(M), !, Γ /- M : T, !,
                                                          simplify(Γ, T, {some(_ :: K), TBody}), !,
                                                          Γ / St /- M ==>> M_ / St_, !, check_someBind(TBody, M_, B),
                                                          format('~w\n~w : ~w\n', [TX, X, TBody]).
run(type(X :: K) = T, (Γ, St), ([X - bTAbb(T, K) | Γ], St))
                                                       :- !, tx(X), k(K), t(T), Γ /- T :: K, show(Γ, X, bTAbb(T, K)).
run(type(X) = T, (Γ, St), ([X - bTAbb(T, K) | Γ], St)) :- !, tx(X), t(T), Γ /- T :: K, show(Γ, X, bTAbb(T, K)).
run(X <: K, (Γ, St), ([X - bTVar(K) | Γ], St))         :- !, tx(X), k(K), show(Γ, X, bTVar(K)).
run(X : T, (Γ, St), ([X - bVar(T) | Γ], St))           :- !, x(X), t(T), show(Γ, X, bVar(T)).
run(X : T = M, (Γ, St), ([X - bMAbb(M_, T) | Γ], St_)) :- !, x(X), t(T), m(M), !, Γ /- M : T1, Γ /- T1 = T,
                                                          Γ / St /- M ==>> M_ / St_, show(Γ, X, bMAbb(M_, T)).
run(X = M, (Γ, St), ([X - bMAbb(M_, T) | Γ], St_))     :- !, x(X), m(M), !, Γ /- M : T, !,
                                                          Γ / St /- M ==>> M_ / St_, !, show(Γ, X, bMAbb(M_, T)).
run(M, (Γ, St), (Γ, St_))                              :- !, m(M), !, Γ /- M : T, !, Γ / St /- M ==>> M_ / St_, !, writeln(M_ : T).

run(Ls) :- foldl(run, Ls, ([], []), _). 

% ------------------------   TEST  ------------------------

:- run([tag(none, 0) as [[none : nat, some : nat]]]).
:- run([case(tag(none, 0) as [[none : nat]], [none = (x, 0)])]). 
% lambda x:Bot. x;
:- run([(fn(x : bot) -> x)]). 
% lambda x:Bot. x x;
:- run([(fn(x : bot) -> x $ x)]). 
% lambda x:<a:Bool,b:Bool>. x;
:- run([(fn(x : [[a : bool, b : bool]]) -> x)]). 
% lambda x:Top. x;
:- run([(fn(x : top) -> x)]). 
% (lambda x:Top. x) (lambda x:Top. x);
:- run([(fn(x : top) -> x) $ (fn(x : top) -> x)]). 
% (lambda x:Top->Top. x) (lambda x:Top. x);
:- run([(fn(x : (top -> top)) -> x) $ (fn(x : top) -> x)]). 
% (lambda r:{x:Top->Top}. r.x r.x) 
%   {x=lambda z:Top.z, y=lambda z:Top.z}; 
:- run([(fn(r : {[x : (top -> top)]}) -> r # x $ r # x) $ {[x = (fn(z : top) -> z), y = (fn(z : top) -> z)]}]). 
% "hello";
:- run(["hello"]). 
% unit;
:- run([unit]). 
% lambda x:A. x;
% let x=true in x;

% {x=true, y=false};
:- run([{[x = true, y = false]}]). 
% {x=true, y=false}.x;
:- run([{[x = true, y = false]} # x]). 
% {true, false};
:- run([{[1 = true, 2 = false]}]). 
% {true, false}.1;
:- run([{[1 = true, 2 = false]} # 1]). 

% if true then {x=true,y=false,a=false} else {y=false,x={},b=false};
:- run([if(true, {[x = true, y = false, a = false]}, {[y = false, x = {[]}, b = false]})]). 
% try error with true;
:- run([try(error, true)]). 
% try if true then error else true with false;
:- run([try(if(true, error, true), false)]). 
% try {error,true} with {unit,false};

% timesfloat 2.0 3.14159;
:- run([2.0 * 3.14159]). 
% lambda X. lambda x:X. x;
:- run([(fn('X' <: top) => fn(x : 'X') -> x)]). 
% (lambda X. lambda x:X. x) [Nat];

% lambda X<:Top->Top. lambda x:X. x x;
:- run([(fn('X' <: (top -> top)) => fn(x : 'X') -> x $ x)]). 

% lambda x:Bool. x;
:- run([(fn(x : bool) -> x)]). 
% (lambda x:Bool->Bool. if x false then true else false)
%   (lambda x:Bool. if x then false else true);

% if error then true else false;
:- run([if(error, true, false)]). 

% error true;
:- run([error $ true]). 
% (lambda x:Bool. x) error;
:- run([(fn(x : bool) -> x) $ error]). 
% lambda x:Nat. succ x;
:- run([(fn(x : nat) -> succ(x))]). 
% (lambda x:Nat. succ (succ x)) (succ 0);
:- run([(fn(x : nat) -> succ(succ(x))) $ succ(0)]). 
% T = Nat->Nat;
% lambda f:T. lambda x:Nat. f (f x);
:- run([type('T') = (nat -> nat), (fn(f : 'T') -> fn(x : nat) -> f $ (f $ x))]).


/* Alternative object encodings */ 
:- run([ 
% CounterRep = {x: Ref Nat};
type('CounterRep') = {[x : ref(nat)]},  
% SetCounter = {get:Unit->Nat, set:Nat->Unit, inc:Unit->Unit}; 
type('SetCounter') = {[get : (unit -> nat), set : (nat -> unit), inc : (unit -> unit)]},  
% setCounterClass =
% lambda r:CounterRep.
% lambda self: Unit->SetCounter.
% lambda _:Unit.
% {get = lambda _:Unit. !(r.x),
% set = lambda i:Nat.  r.x:=i,
% inc = lambda _:Unit. (self unit).set (succ((self unit).get unit))} 
%     as SetCounter;
setCounterClass = (fn(r : 'CounterRep') -> fn(self : (unit -> 'SetCounter')) -> fn('_' : unit) -> {[get = (fn('_' : unit) -> '!'(r # x)), set = (fn(i : nat) -> r # x := i), inc = (fn('_' : unit) -> (self $ unit) # set $ succ((self $ unit) # get $ unit))]} as 'SetCounter'),  
% newSetCounter = 
% lambda _:Unit.
% let r = {x=ref 1} in
% fix (setCounterClass r) unit;
newSetCounter = (fn('_' : unit) -> (let(r) = {[x = ref(succ(0))]} in fix(setCounterClass $ r) $ unit)),  
% c = newSetCounter unit;
c = newSetCounter $ unit, c # get $ unit,  
% InstrCounter = {get:Unit->Nat, 
% set:Nat->Unit, 
% inc:Unit->Unit,
% accesses:Unit->Nat};
type('InstrCounter') = {[get : (unit -> nat), set : (nat -> unit), inc : (unit -> unit), accesses : (unit -> nat)]},  
% InstrCounterRep = {x: Ref Nat, a: Ref Nat};
type('InstrCounterRep') = {[x : ref(nat), a : ref(nat)]},  
% instrCounterClass =
% lambda r:InstrCounterRep.
% lambda self: Unit->InstrCounter.
% lambda _:Unit.
% let super = setCounterClass r self unit in
% {get = super.get,
% set = lambda i:Nat. (r.a:=succ(!(r.a)); super.set i),
% inc = super.inc,
% accesses = lambda _:Unit. !(r.a)} as InstrCounter;
instrCounterClass = (fn(r : 'InstrCounterRep') -> fn(self : (unit -> 'InstrCounter')) -> fn('_' : unit) -> (let(super) = setCounterClass $ r $ self $ unit in {[get = super # get, set = (fn(i : nat) -> (let('_') = (r # a := succ('!'(r # a))) in super # set $ i)), inc = super # inc, accesses = (fn('_' : unit) -> '!'(r # a))]} as 'InstrCounter')),  
% newInstrCounter = 
% lambda _:Unit.
% let r = {x=ref 1, a=ref 0} in
% fix (instrCounterClass r) unit;
newInstrCounter = (fn('_' : unit) -> (let(r) = {[x = ref(succ(0)), a = ref(0)]} in fix(instrCounterClass $ r) $ unit)),  
% ic = newInstrCounter unit;
ic = newInstrCounter $ unit, ic # get $ unit, ic # accesses $ unit, ic # inc $ unit, ic # get $ unit, ic # accesses $ unit, 


/* ------------ */  

% instrCounterClass =
% lambda r:InstrCounterRep.
% lambda self: Unit->InstrCounter.
% lambda _:Unit.
% let super = setCounterClass r self unit in
% {get = lambda _:Unit. (r.a:=succ(!(r.a)); super.get unit),
% set = lambda i:Nat. (r.a:=succ(!(r.a)); super.set i),
% inc = super.inc,
% accesses = lambda _:Unit. !(r.a)} as InstrCounter;
instrCounterClass = (fn(r : 'InstrCounterRep') -> fn(self : (unit -> 'InstrCounter')) -> fn('_' : unit) -> (let(super) = setCounterClass $ r $ self $ unit in {[get = (fn('_' : unit) -> (fn('_' : unit) -> super # get $ unit) $ (r # a := succ('!'(r # a)))), set = (fn(i : nat) -> (fn('_' : unit) -> super # set $ i) $ (r # a := succ('!'(r # a)))), inc = super # inc, accesses = (fn('_' : unit) -> '!'(r # a))]} as 'InstrCounter')),  

% ResetInstrCounter = {get:Unit->Nat, set:Nat->Unit, 
% inc:Unit->Unit, accesses:Unit->Nat,
% reset:Unit->Unit};
type('ResetInstrCounter') = {[get : (unit -> nat), set : (nat -> unit), inc : (unit -> unit), accesses : (unit -> nat), reset : (unit -> unit)]},  

% resetInstrCounterClass =
% lambda r:InstrCounterRep.
% lambda self: Unit->ResetInstrCounter.
% lambda _:Unit.
% let super = instrCounterClass r self unit in
% {get = super.get,
% set = super.set,
% inc = super.inc,
% accesses = super.accesses,
% reset = lambda _:Unit. r.x:=0} 
% as ResetInstrCounter;
resetInstrCounterClass = (fn(r : 'InstrCounterRep') -> fn(self : (unit -> 'ResetInstrCounter')) -> fn('_' : unit) -> (let(super) = instrCounterClass $ r $ self $ unit in {[get = super # get, set = super # set, inc = super # inc, accesses = super # accesses, reset = (fn('_' : unit) -> r # x := 0)]} as 'ResetInstrCounter')),  

% BackupInstrCounter = {get:Unit->Nat, set:Nat->Unit, 
% inc:Unit->Unit, accesses:Unit->Nat,
% backup:Unit->Unit, reset:Unit->Unit};
type('BackupInstrCounter') = {[get : (unit -> nat), set : (nat -> unit), inc : (unit -> unit), accesses : (unit -> nat), backup : (unit -> unit), reset : (unit -> unit)]},  

% BackupInstrCounterRep = {x: Ref Nat, a: Ref Nat, b: Ref Nat};
type('BackupInstrCounterRep') = {[x : ref(nat), a : ref(nat), b : ref(nat)]},  

% backupInstrCounterClass =
% lambda r:BackupInstrCounterRep.
% lambda self: Unit->BackupInstrCounter.
% lambda _:Unit.
% let super = resetInstrCounterClass r self unit in
% {get = super.get,
% set = super.set,
% inc = super.inc,
% accesses = super.accesses,
% reset = lambda _:Unit. r.x:=!(r.b),
% backup = lambda _:Unit. r.b:=!(r.x)} 
% as BackupInstrCounter;
backupInstrCounterClass = (fn(r : 'BackupInstrCounterRep') -> fn(self : (unit -> 'BackupInstrCounter')) -> fn('_' : unit) -> (let(super) = resetInstrCounterClass $ r $ self $ unit in {[get = super # get, set = super # set, inc = super # inc, accesses = super # accesses, reset = (fn('_' : unit) -> r # x := '!'(r # b)), backup = (fn('_' : unit) -> r # b := '!'(r # x))]} as 'BackupInstrCounter')),  

% newBackupInstrCounter = 
% lambda _:Unit.
% let r = {x=ref 1, a=ref 0, b=ref 0} in
% fix (backupInstrCounterClass r) unit;
newBackupInstrCounter = (fn('_' : unit) -> (let(r) = {[x = ref(succ(0)), a = ref(0), b = ref(0)]} in fix(backupInstrCounterClass $ r) $ unit)),  

% ic = newBackupInstrCounter unit;
ic = newBackupInstrCounter $ unit, (fn('_' : unit) -> ic # get $ unit) $ (ic # inc $ unit), (fn('_' : unit) -> ic # get $ unit) $ (ic # backup $ unit), (fn('_' : unit) -> ic # get $ unit) $ (ic # inc $ unit), (fn('_' : unit) -> ic # get $ unit) $ (ic # reset $ unit), ic # accesses $ unit]).
:- run([ 
% CounterRep = {x:Ref Nat}
type('CounterRep') = {[x : ref(nat)]},  
% SetCounter = {get:Unit -> Nat, set:Nat -> Unit, inc:Unit -> Unit}
type('SetCounter') = {[get : (unit -> nat), set : (nat -> unit), inc : (unit -> unit)]},  
% SetCounterMethodTable =  
% {get: Ref <none:Unit, some:Unit->Nat>, 
% set: Ref <none:Unit, some:Nat->Unit>, 
% inc: Ref <none:Unit, some:Unit->Unit>}; 
type('SetCounterMethodTable') = {[get : ref([[none : unit, some : (unit -> nat)]]), set : ref([[none : unit, some : (nat -> unit)]]), inc : ref([[none : unit, some : (unit -> unit)]])]},  
% packGet = 
% lambda f:Unit->Nat. 
% <some = f> as <none:Unit, some:Unit->Nat>;
packGet = (fn(f : (unit -> nat)) -> tag(some, f) as [[none : unit, some : (unit -> nat)]]),  
% unpackGet = 
% lambda mt:SetCounterMethodTable.
% case !(mt.get) of
% <none=x> ==> error
% | <some=f> ==> f;
unpackGet = (fn(mt : 'SetCounterMethodTable') -> case('!'(mt # get), [none = (x, error), some = (f, f)])),  
% packSet = 
% lambda f:Nat->Unit. 
% <some = f> as <none:Unit, some:Nat->Unit>;
packSet = (fn(f : (nat -> unit)) -> tag(some, f) as [[none : unit, some : (nat -> unit)]]),  
% unpackSet = 
% lambda mt:SetCounterMethodTable.
% case !(mt.set) of
% <none=x> ==> error
% | <some=f> ==> f;
unpackSet = (fn(mt : 'SetCounterMethodTable') -> case('!'(mt # set), [none = (x, error), some = (f, f)])),  
% packInc = 
% lambda f:Unit->Unit. 
% <some = f> as <none:Unit, some:Unit->Unit>;
packInc = (fn(f : (unit -> unit)) -> tag(some, f) as [[none : unit, some : (unit -> unit)]]),  
% unpackInc = 
% lambda mt:SetCounterMethodTable.
% case !(mt.inc) of
% <none=x> ==> error
% | <some=f> ==> f;
unpackInc = (fn(mt : 'SetCounterMethodTable') -> case('!'(mt # inc), [none = (x, error), some = (f, f)])),  
% setCounterClass =
% lambda r:CounterRep.
% lambda self: SetCounterMethodTable.
% (self.get := packGet (lambda _:Unit. !(r.x));
% self.set := packSet (lambda i:Nat.  r.x:=i);
% self.inc := packInc (lambda _:Unit. unpackSet self (succ (unpackGet self unit))));
setCounterClass = (fn(r : 'CounterRep') -> fn(self : 'SetCounterMethodTable') -> (fn('_' : unit) -> (fn('_' : unit) -> self # inc := packInc $ (fn('_' : unit) -> unpackSet $ self $ succ(unpackGet $ self $ unit))) $ (self # set := packSet $ (fn(i : nat) -> r # x := i))) $ (self # get := packGet $ (fn('_' : unit) -> '!'(r # x))))]).

/* This diverges... */ 
/*
run([
% CounterRep = {x:Ref Nat}
type('CounterRep') = record([x:ref(nat)]),
% SetCounter = {get:Unit -> Nat, set:Nat -> Unit, inc:Unit -> Unit}
type('SetCounter') = record([get:arr(unit,nat), set:arr(nat,unit), inc:arr(unit,unit)]),
% setCounterClass =
% lambda R<:CounterRep.
% lambda self: R->SetCounter.
% lambda r: R.
% {get = lambda _:Unit. !(r.x),
% set = lambda i:Nat.  r.x:=i,
% inc = lambda _:Unit. (self r).set (succ((self r).get unit))} 
%     as SetCounter;
setCounterClass = tfn('R','CounterRep',fn(self,arr('R','SetCounter'),fn(r,'R',as(record([get=fn('_',unit,deref(proj(r,x))), set=fn(i,nat,assign(proj(r,x),i)), inc=fn('_',unit,app(proj(app(self,r),set),succ(app(proj(app(self,r),get),unit))))]),'SetCounter')))),
% newSetCounter = 
% lambda _:Unit.
% let r = {x=ref 1} in
% fix (setCounterClass [CounterRep]) r;
newSetCounter = fn('_',unit,let(r,record([x=ref(succ(zero))]),app(fix(tapp(setCounterClass,'CounterRep')),r))),
% InstrCounter = {get:Unit->Nat, 
% set:Nat->Unit, 
% inc:Unit->Unit,
% accesses:Unit->Nat};
type('InstrCounter') = record([get:arr(unit,nat), set:arr(nat,unit), inc:arr(unit,unit), accesses:arr(unit,nat)]),
% InstrCounterRep = {x: Ref Nat, a: Ref Nat};
type('InstrCounterRep') = record([x:ref(nat), a:ref(nat)]),
% instrCounterClass =
% lambda R<:InstrCounterRep.
% lambda self: R->InstrCounter.
% let super = setCounterClass [R] self in
% lambda r:R.
% {get = (super r).get,
% set = lambda i:Nat. (r.a:=succ(!(r.a)); (super r).set i),
% inc = (super r).inc,
% accesses = lambda _:Unit. !(r.a)} as InstrCounter;
instrCounterClass = tfn('R','InstrCounterRep',fn(self,arr('R','InstrCounter'),let(super,app(tapp(setCounterClass,'R'),self),fn(r,'R',as(record([get=proj(app(super,r),get), set=fn(i,nat,app(fn('_',unit,app(proj(app(super,r),set),i)),assign(proj(r,a),succ(deref(proj(r,a)))))), inc=proj(app(super,r),inc), accesses=fn('_',unit,deref(proj(r,a)))]),'InstrCounter'))))),

% newInstrCounter = 
% lambda _:Unit.
% let r = {x=ref 1, a=ref 0} in
% fix (instrCounterClass [InstrCounterRep]) r;
newInstrCounter = fn('_',unit,let(r,record([x=ref(succ(zero)), a=ref(zero)]),app(fix(tapp(instrCounterClass,'InstrCounterRep')),r))),

% SET traceeval;

% ic = newInstrCounter unit;
ic = app(newInstrCounter,unit),

% ic.get unit;
app(proj(ic,get),unit),

% ic.accesses unit;
app(proj(ic,accesses),unit),
% ic.inc unit;
app(proj(ic,inc),unit),
% ic.get unit;
app(proj(ic,get),unit),
% ic.accesses unit;
app(proj(ic,accesses),unit)
]).
*/ 
/* This is cool... */ 
:- run([ 
% CounterRep = {x:Ref Nat}
type('CounterRep') = {[x : ref(nat)]},  

% SetCounter = {get:Unit -> Nat, set:Nat -> Unit, inc:Unit -> Unit}
type('SetCounter') = {[get : (unit -> nat), set : (nat -> unit), inc : (unit -> unit)]},  

% setCounterClass =
% lambda M<:SetCounter.
% lambda R<:CounterRep.
% lambda self: Ref(R->M).
% lambda r: R.
% {get = lambda _:Unit. !(r.x),
% set = lambda i:Nat.  r.x:=i,
% inc = lambda _:Unit. (!self r).set (succ((!self r).get unit))} 
%       as SetCounter;
setCounterClass = (fn('M' <: 'SetCounter') => fn('R' <: 'CounterRep') => fn(self : ref(('R' -> 'M'))) -> fn(r : 'R') -> {[get = (fn('_' : unit) -> '!'(r # x)), set = (fn(i : nat) -> r # x := i), inc = (fn('_' : unit) -> ('!'(self) $ r) # set $ succ(('!'(self) $ r) # get $ unit))]} as 'SetCounter'),  
% newSetCounter = 
% lambda _:Unit.
% let m = ref (lambda r:CounterRep. error as SetCounter) in
% let m' = setCounterClass [SetCounter] [CounterRep] m in
% (m := m';
% let r = {x=ref 1} in
% m' r);
newSetCounter = (fn('_' : unit) -> (let(m) = ref((fn(r : 'CounterRep') -> error as 'SetCounter')) in let(m_) = setCounterClass!['SetCounter']!['CounterRep'] $ m in (fn('_' : unit) -> (let(r) = {[x = ref(succ(0))]} in m_ $ r)) $ (m := m_))),  

% c = newSetCounter unit;
c = newSetCounter $ unit, c # get $ unit, c # set $ succ(succ(succ(0))), c # inc $ unit, c # get $ unit,  
% setCounterClass =
% lambda M<:SetCounter.
% lambda R<:CounterRep.
% lambda self: Ref(R->M).
% lambda r: R.
% {get = lambda _:Unit. !(r.x),
% set = lambda i:Nat.  r.x:=i,
% inc = lambda _:Unit. (!self r).set (succ((!self r).get unit))} 
%       as SetCounter;
setCounterClass = (fn('M' <: 'SetCounter') => fn('R' <: 'CounterRep') => fn(self : ref(('R' -> 'M'))) -> fn(r : 'R') -> {[get = (fn('_' : unit) -> '!'(r # x)), set = (fn(i : nat) -> r # x := i), inc = (fn('_' : unit) -> ('!'(self) $ r) # set $ succ(('!'(self) $ r) # get $ unit))]} as 'SetCounter'),  
% InstrCounter = {get:Unit->Nat, 
% set:Nat->Unit, 
% inc:Unit->Unit,
% accesses:Unit->Nat};
type('InstrCounter') = {[get : (unit -> nat), set : (nat -> unit), inc : (unit -> unit), accesses : (unit -> nat)]},  
% InstrCounterRep = {x: Ref Nat, a: Ref Nat};
type('InstrCounterRep') = {[x : ref(nat), a : ref(nat)]},  
% instrCounterClass =
% lambda M<:InstrCounter.
% lambda R<:InstrCounterRep.
% lambda self: Ref(R->M).
% lambda r: R.
% let super = setCounterClass [M] [R] self in
% {get = (super r).get,
% set = lambda i:Nat. (r.a:=succ(!(r.a)); (super r).set i),
% inc = (super r).inc,
% accesses = lambda _:Unit. !(r.a)}     as InstrCounter;
instrCounterClass = (fn('M' <: 'InstrCounter') => fn('R' <: 'InstrCounterRep') => fn(self : ref(('R' -> 'M'))) -> fn(r : 'R') -> (let(super) = setCounterClass!['M']!['R'] $ self in {[get = (super $ r) # get, set = (fn(i : nat) -> (fn('_' : unit) -> (super $ r) # set $ i) $ (r # a := succ('!'(r # a)))), inc = (super $ r) # inc, accesses = (fn('_' : unit) -> '!'(r # a))]} as 'InstrCounter')),  
% newInstrCounter = 
% lambda _:Unit.
% let m = ref (lambda r:InstrCounterRep. error as InstrCounter) in
% let m' = instrCounterClass [InstrCounter] [InstrCounterRep] m in
% (m := m';
% let r = {x=ref 1, a=ref 0} in
% m' r);
newInstrCounter = (fn('_' : unit) -> (let(m) = ref((fn(r : 'InstrCounterRep') -> error as 'InstrCounter')) in let(m_) = instrCounterClass!['InstrCounter']!['InstrCounterRep'] $ m in let('_') = (m := m_) in let(r) = {[x = ref(succ(0)), a = ref(0)]} in m_ $ r)),  

% ic = newInstrCounter unit;
ic = newInstrCounter $ unit,
ic # get $ unit,
ic # accesses $ unit,
ic # inc $ unit,
ic # get $ unit,
ic # accesses $ unit
]).
:- writeln('\nJames Reily\'s alternative:\n').
/* James Reily's alternative: */ 
:- run([ 
% Counter = {get:Unit->Nat, inc:Unit->Unit};
type('Counter') = {[get : (unit -> nat), inc : (unit -> unit)]},  
% inc3 = lambda c:Counter. (c.inc unit; c.inc unit; c.inc unit);
inc3 = (fn(c : 'Counter') -> (fn('_' : unit) -> (fn('_' : unit) -> c # inc $ unit) $ (c # inc $ unit)) $ (c # inc $ unit)),  

% SetCounter = {get:Unit->Nat, set:Nat->Unit, inc:Unit->Unit};
type('SetCounter') = {[get : (unit -> nat), set : (nat -> unit), inc : (unit -> unit)]},  
% InstrCounter = {get:Unit->Nat, set:Nat->Unit, inc:Unit->Unit, accesses:Unit->Nat};
type('InstrCounter') = {[get : (unit -> nat), set : (nat -> unit), inc : (unit -> unit), accesses : (unit -> nat)]},  
% CounterRep = {x: Ref Nat};
type('CounterRep') = {[x : ref(nat)]},  
% InstrCounterRep = {x: Ref Nat, a: Ref Nat};
type('InstrCounterRep') = {[x : ref(nat), a : ref(nat)]},  
% dummySetCounter =
% {get = lambda _:Unit. 0,
% set = lambda i:Nat.  unit,
% inc = lambda _:Unit. unit}
% as SetCounter;
dummySetCounter = {[get = (fn('_' : unit) -> 0), set = (fn(i : nat) -> unit), inc = (fn('_' : unit) -> unit)]} as 'SetCounter',  

% dummyInstrCounter =
% {get = lambda _:Unit. 0,
% set = lambda i:Nat.  unit,
% inc = lambda _:Unit. unit,
% accesses = lambda _:Unit. 0}
% as InstrCounter;
dummyInstrCounter = {[get = (fn('_' : unit) -> 0), set = (fn(i : nat) -> unit), inc = (fn('_' : unit) -> unit), accesses = (fn('_' : unit) -> 0)]} as 'InstrCounter',  

% setCounterClass =
% lambda r:CounterRep.
% lambda self: Source SetCounter.     
% {get = lambda _:Unit. !(r.x),
% set = lambda i:Nat. r.x:=i,
% inc = lambda _:Unit. (!self).set (succ ((!self).get unit))}
% as SetCounter;
setCounterClass = (fn(r : 'CounterRep') -> fn(self : source('SetCounter')) -> {[get = (fn('_' : unit) -> '!'(r # x)), set = (fn(i : nat) -> r # x := i), inc = (fn('_' : unit) -> '!'(self) # set $ succ('!'(self) # get $ unit))]} as 'SetCounter'),  

% newSetCounter =
% lambda _:Unit. let r = {x=ref 1} in
% let cAux = ref dummySetCounter in
% (cAux :=
% (setCounterClass r cAux);
% !cAux);
newSetCounter = (fn('_' : unit) -> (let(r) = {[x = ref(succ(0))]} in let(cAux) = ref(dummySetCounter) in (fn('_' : unit) -> '!'(cAux)) $ (cAux := setCounterClass $ r $ cAux))),  

% instrCounterClass =
% lambda r:InstrCounterRep.
% lambda self: Source InstrCounter.       /* NOT Ref */
% let super = setCounterClass r self in
% {get = super.get,
% set = lambda i:Nat. (r.a:=succ(!(r.a)); super.set i),
% inc = super.inc,
% accesses = lambda _:Unit. !(r.a)}
% as InstrCounter;
instrCounterClass = (fn(r : 'InstrCounterRep') -> fn(self : source('InstrCounter')) -> (let(super) = setCounterClass $ r $ self in {[get = super # get, set = (fn(i : nat) -> (fn('_' : unit) -> super # set $ i) $ (r # a := succ('!'(r # a)))), inc = super # inc, accesses = (fn('_' : unit) -> '!'(r # a))]} as 'InstrCounter')),  

% newInstrCounter =
% lambda _:Unit. let r = {x=ref 1, a=ref 0} in
% let cAux = ref dummyInstrCounter in
% (cAux :=
% (instrCounterClass r cAux);
% !cAux);
newInstrCounter = (fn('_' : unit) -> (let(r) = {[x = ref(succ(0)), a = ref(0)]} in let(cAux) = ref(dummyInstrCounter) in (fn('_' : unit) -> '!'(cAux)) $ (cAux := instrCounterClass $ r $ cAux))),  

% c = newInstrCounter unit;
c = newInstrCounter $ unit, (fn('_' : unit) -> c # get $ unit) $ (inc3 $ c), (fn('_' : unit) -> c # get $ unit) $ (c # set $ succ(succ(succ(succ(succ(0)))))), c # accesses $ unit]).

:- halt.

高階多相で有界量化したもののフルセットにさらに参照を加え書き換え可能なオブジェクトにしたもの

まとめ

Fω<: は System F に有界量化と部分型付けを加えた高階多相型システムでした。

Ishtar on an Akkadian seal

Inanna From Wikipedia, the free encyclopedia

"Ishtar" redirects here. For other uses, see Ishtar (disambiguation).

Inanna[a] is an ancient Mesopotamian goddess associated with love, beauty, sex, desire, fertility, war, justice, and political power. She was originally worshipped in Sumer and was later worshipped by the Akkadians, Babylonians, and Assyrians under the name Ishtar.[b] She was known as the "Queen of Heaven" and was the patron goddess of the Eanna temple at the city of Uruk, which was her main cult center. She was associated with the planet Venus and her most prominent symbols included the lion and the eight-pointed star. Her husband was the god Dumuzid (later known as Tammuz) and her sukkal, or personal attendant, was the goddess Ninshubur (who later became the male deity Papsukkal).

Inanna was worshipped in Sumer at least as early as the Uruk period (c. 4000 BC – c. 3100 BC), but she had little cult prior to the conquest of Sargon of Akkad. During the post-Sargonic era, she became one of the most widely venerated deities in the Sumerian pantheon,[4][5] with temples across Mesopotamia. The cult of Inanna-Ishtar, which may have been associated with a variety of sexual rites, was continued by the East Semitic-speaking people who succeeded the Sumerians in the region. She was especially beloved by the Assyrians, who elevated her to become the highest deity in their pantheon, ranking above their own national god Ashur. Inanna-Ishtar is alluded to in the Hebrew Bible and she greatly influenced the Phoenician goddess Astoreth, who later influenced the development of the Greek goddess Aphrodite. Her cult continued to flourish until its gradual decline between the first and sixth centuries AD in the wake of Christianity, though it survived in parts of Upper Mesopotamia as late as the eighteenth century.

Inanna appears in more myths than any other Sumerian deity.[6][7][8] Many of her myths involve her taking over the domains of other deities. She was believed to have stolen the mes, which represented all positive and negative aspects of civilization, from Enki, the god of wisdom. She was also believed to have taken over the Eanna temple from An, the god of the sky. Alongside her twin brother Utu (later known as Shamash), Inanna was the enforcer of divine justice; she destroyed Mount Ebih for having challenged her authority, unleashed her fury upon the gardener Shukaletuda after he raped her in her sleep, and tracked down the bandit woman Bilulu and killed her in divine retribution for having murdered Dumuzid. In the standard Akkadian version of the Epic of Gilgamesh, Ishtar asks Gilgamesh to become her consort. When he refuses, she unleashes the Bull of Heaven, resulting in the death of Enkidu and Gilgamesh's subsequent grapple with his mortality.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?