43
53

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

PythonのStatsModelsで重回帰分析

Last updated at Posted at 2019-05-23

はじめに

PythonのライブラリStatsModelsを使用して重回帰分析をやってみます。Rと違って少々不便です。

環境

  • Google Colaboratory
  • statsmodels==0.9.0

参考

手順

データの読み込み

ボストン市の住宅価格データを使用します。ボストン市の住宅価格を目的変数、NOxの濃度や部屋数などを説明変数として持っているデータです。

scipyが1.3だとstatsmodelsの0.9.0が使用できないのでダウングレード後、ランタイムを再起動します。

!pip install scipy==1.2

データを読み込み、プロットして確認してみます。

# 必須のモジュール
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_boston


# データを読み込み
boston = load_boston()

# 目的変数と説明変数の関係を確認
fig, ax = plt.subplots(5, 3, figsize=(15, 15))
xlabels = boston.feature_names
for i in range(5):
    for j in range(3):
        if 3*i+j >= 13:
            break
        
        ax[i, j].scatter(boston.data[:, 3*i+j], boston.target, marker='.')
        ax[i, j].set_xlabel(xlabels[3*i+j])
        ax[i, j].set_ylabel("price")

plt.tight_layout()
plt.show()

image.png
image.png

相関係数を算出

重回帰分析をする上では変数間の相関が、多重共線性として問題になります。そこで変数間の相関を確認しておきます。

# 目的変数と説明変数を一つのデータフレームにまとめる
df = pd.DataFrame(boston.data, columns=boston.feature_names)
df['PRICE'] = boston.target

# 相関を計算
corr = df.corr()

# データフレームに色をつける
corr.style.format("{:.2}").background_gradient(cmap=plt.get_cmap('coolwarm'), axis=1)

image.png

seabornでも同様のヒートマップを作成できます。

fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(corr, vmax=1, vmin=-1, center=0, annot=True, cbar=True, cmap='coolwarm', square=True, fmt='.2f', ax=ax)

image.png

変数減少法で重回帰分析

変数減少法を使用して分析してみます。

まずデータを準備します。

from sklearn.model_selection import train_test_split


X = df.drop('PRICE', axis=1)
y = df['PRICE']

# テータ分割
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size =0.8, random_state=0)

全変数を使用して重回帰分析をしてみます。

import statsmodels.api as sm

# 回帰モデル作成
mod = sm.OLS(y_train, sm.add_constant(X_train))

# 訓練
result = mod.fit() 

# 統計サマリを表示
print(result.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  PRICE   R-squared:                       0.773
Model:                            OLS   Adj. R-squared:                  0.765
Method:                 Least Squares   F-statistic:                     102.2
Date:                Thu, 23 May 2019   Prob (F-statistic):          9.64e-117
Time:                        17:39:57   Log-Likelihood:                -1171.5
No. Observations:                 404   AIC:                             2371.
Df Residuals:                     390   BIC:                             2427.
Df Model:                          13                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const         38.0917      5.522      6.898      0.000      27.234      48.949
CRIM          -0.1194      0.037     -3.257      0.001      -0.192      -0.047
ZN             0.0448      0.014      3.102      0.002       0.016       0.073
INDUS          0.0055      0.063      0.087      0.931      -0.119       0.130
CHAS           2.3408      0.902      2.595      0.010       0.567       4.115
NOX          -16.1236      4.212     -3.828      0.000     -24.404      -7.843
RM             3.7087      0.458      8.106      0.000       2.809       4.608
AGE           -0.0031      0.014     -0.218      0.828      -0.031       0.025
DIS           -1.3864      0.214     -6.480      0.000      -1.807      -0.966
RAD            0.2442      0.070      3.481      0.001       0.106       0.382
TAX           -0.0110      0.004     -2.819      0.005      -0.019      -0.003
PTRATIO       -1.0459      0.137     -7.636      0.000      -1.315      -0.777
B              0.0081      0.003      2.749      0.006       0.002       0.014
LSTAT         -0.4928      0.054     -9.086      0.000      -0.599      -0.386
==============================================================================
Omnibus:                      141.494   Durbin-Watson:                   1.996
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              629.882
Skew:                           1.470   Prob(JB):                    1.67e-137
Kurtosis:                       8.365   Cond. No.                     1.55e+04
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.55e+04. This might indicate that there are
strong multicollinearity or other numerical problems.

多重共線性の疑いのある変数を探します。
最初にそれぞれの説明変数と目的変数の相関係数を計算しました。もし変数が独立であれば、回帰係数も相関係数と同じ符号になるはずです。しかし多重共線性があると、回帰係数が一意に決まらず不安定になり、相関係数と異なる符号になる場合があります。これを確認してみます。

# constを除くために1から始める
np.sign(result.params[1:])

# 目的変数を除くために-1までとする
np.sign(corr['PRICE'][:-1])

# 0でない変数が相関している可能性あり
np.sign(result.params[1:]) - np.sign(corr['PRICE'][:-1])

CRIM       0.0
ZN         0.0
INDUS      2.0
CHAS       0.0
NOX        0.0
RM         0.0
AGE        0.0
DIS       -2.0
RAD        2.0
TAX        0.0
PTRATIO    0.0
B          0.0
LSTAT      0.0
dtype: float64

INDUS、DIS、RADを取り除いて回帰分析してみます。

# 回帰モデル作成
d = ['INDUS', 'DIS', 'RAD']
mod = sm.OLS(y_train, sm.add_constant(X_train.drop(d, axis=1)))

# 訓練
result = mod.fit() 

# 統計サマリを表示
print(result.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  PRICE   R-squared:                       0.742
Model:                            OLS   Adj. R-squared:                  0.735
Method:                 Least Squares   F-statistic:                     112.9
Date:                Thu, 23 May 2019   Prob (F-statistic):          5.42e-109
Time:                        17:42:50   Log-Likelihood:                -1197.5
No. Observations:                 404   AIC:                             2417.
Df Residuals:                     393   BIC:                             2461.
Df Model:                          10                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const         19.6164      5.196      3.776      0.000       9.402      29.831
CRIM          -0.0603      0.037     -1.632      0.104      -0.133       0.012
ZN             0.0022      0.014      0.158      0.874      -0.025       0.029
CHAS           2.9510      0.949      3.111      0.002       1.086       4.816
NOX           -5.3578      4.024     -1.331      0.184     -13.269       2.554
RM             4.4060      0.471      9.359      0.000       3.480       5.332
AGE            0.0202      0.015      1.393      0.164      -0.008       0.049
TAX           -0.0003      0.002     -0.122      0.903      -0.005       0.004
PTRATIO       -1.0610      0.141     -7.516      0.000      -1.339      -0.783
B              0.0076      0.003      2.457      0.014       0.002       0.014
LSTAT         -0.4918      0.057     -8.562      0.000      -0.605      -0.379
==============================================================================
Omnibus:                      166.959   Durbin-Watson:                   1.995
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              885.215
Skew:                           1.706   Prob(JB):                    6.00e-193
Kurtosis:                       9.399   Cond. No.                     1.35e+04
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.35e+04. This might indicate that there are
strong multicollinearity or other numerical problems.

もう一度確認。

(np.sign(result.params[1:]) - np.sign(corr['PRICE'][:-1])).dropna()

AGE        2.0
B          0.0
CHAS       0.0
CRIM       0.0
LSTAT      0.0
NOX        0.0
PTRATIO    0.0
RM         0.0
TAX        0.0
ZN         0.0
dtype: float64

今度はAGEを落としてみる。

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  PRICE   R-squared:                       0.741
Model:                            OLS   Adj. R-squared:                  0.735
Method:                 Least Squares   F-statistic:                     125.0
Date:                Thu, 23 May 2019   Prob (F-statistic):          1.23e-109
Time:                        17:47:01   Log-Likelihood:                -1198.5
No. Observations:                 404   AIC:                             2417.
Df Residuals:                     394   BIC:                             2457.
Df Model:                           9                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const         18.1151      5.089      3.560      0.000       8.111      28.120
CRIM          -0.0622      0.037     -1.682      0.093      -0.135       0.011
ZN            -0.0037      0.013     -0.284      0.777      -0.030       0.022
CHAS           2.9959      0.949      3.156      0.002       1.130       4.862
NOX           -2.8646      3.609     -0.794      0.428      -9.959       4.230
RM             4.5634      0.458      9.973      0.000       3.664       5.463
TAX           -0.0004      0.002     -0.165      0.869      -0.005       0.004
PTRATIO       -1.0582      0.141     -7.488      0.000      -1.336      -0.780
B              0.0082      0.003      2.656      0.008       0.002       0.014
LSTAT         -0.4617      0.053     -8.664      0.000      -0.566      -0.357
==============================================================================
Omnibus:                      176.632   Durbin-Watson:                   1.980
Prob(Omnibus):                  0.000   Jarque-Bera (JB):             1038.791
Skew:                           1.782   Prob(JB):                    2.69e-226
Kurtosis:                      10.001   Cond. No.                     1.27e+04
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.27e+04. This might indicate that there are
strong multicollinearity or other numerical problems.
(np.sign(result.params[1:]) - np.sign(corr['PRICE'][:-1])).dropna()

B          0.0
CHAS       0.0
CRIM       0.0
LSTAT      0.0
NOX        0.0
PTRATIO    0.0
RM         0.0
TAX        0.0
ZN        -2.0
dtype: float64

今度はZNを落としてみる。

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  PRICE   R-squared:                       0.741
Model:                            OLS   Adj. R-squared:                  0.735
Method:                 Least Squares   F-statistic:                     140.9
Date:                Thu, 23 May 2019   Prob (F-statistic):          1.04e-110
Time:                        17:48:32   Log-Likelihood:                -1198.5
No. Observations:                 404   AIC:                             2415.
Df Residuals:                     395   BIC:                             2451.
Df Model:                           8                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const         17.6474      4.809      3.670      0.000       8.193      27.102
CRIM          -0.0625      0.037     -1.695      0.091      -0.135       0.010
CHAS           3.0095      0.947      3.178      0.002       1.148       4.871
NOX           -2.3888      3.192     -0.748      0.455      -8.664       3.887
RM             4.5523      0.455      9.997      0.000       3.657       5.448
TAX           -0.0005      0.002     -0.232      0.817      -0.005       0.004
PTRATIO       -1.0433      0.131     -7.961      0.000      -1.301      -0.786
B              0.0082      0.003      2.666      0.008       0.002       0.014
LSTAT         -0.4611      0.053     -8.670      0.000      -0.566      -0.357
==============================================================================
Omnibus:                      176.890   Durbin-Watson:                   1.980
Prob(Omnibus):                  0.000   Jarque-Bera (JB):             1043.397
Skew:                           1.784   Prob(JB):                    2.69e-227
Kurtosis:                      10.018   Cond. No.                     1.17e+04
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.17e+04. This might indicate that there are
strong multicollinearity or other numerical problems.
(np.sign(result.params[1:]) - np.sign(corr['PRICE'][:-1])).dropna()

B          0.0
CHAS       0.0
CRIM       0.0
LSTAT      0.0
NOX        0.0
PTRATIO    0.0
RM         0.0
TAX        0.0
dtype: float64

$t^2<2$の変数があるので更に変数を落とす。絶対値が一番小さいTAXを落とす。

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  PRICE   R-squared:                       0.740
Model:                            OLS   Adj. R-squared:                  0.736
Method:                 Least Squares   F-statistic:                     161.4
Date:                Thu, 23 May 2019   Prob (F-statistic):          8.14e-112
Time:                        17:50:47   Log-Likelihood:                -1198.5
No. Observations:                 404   AIC:                             2413.
Df Residuals:                     396   BIC:                             2445.
Df Model:                           7                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const         17.8533      4.721      3.782      0.000       8.572      27.134
CRIM          -0.0654      0.035     -1.888      0.060      -0.134       0.003
CHAS           3.0146      0.945      3.188      0.002       1.156       4.873
NOX           -2.7882      2.684     -1.039      0.300      -8.065       2.489
RM             4.5483      0.454     10.007      0.000       3.655       5.442
PTRATIO       -1.0551      0.121     -8.736      0.000      -1.292      -0.818
B              0.0084      0.003      2.756      0.006       0.002       0.014
LSTAT         -0.4611      0.053     -8.680      0.000      -0.566      -0.357
==============================================================================
Omnibus:                      175.198   Durbin-Watson:                   1.981
Prob(Omnibus):                  0.000   Jarque-Bera (JB):             1019.678
Skew:                           1.768   Prob(JB):                    3.80e-222
Kurtosis:                       9.933   Cond. No.                     7.56e+03
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 7.56e+03. This might indicate that there are
(np.sign(result.params[1:]) - np.sign(corr['PRICE'][:-1])).dropna()

B          0.0
CHAS       0.0
CRIM       0.0
LSTAT      0.0
NOX        0.0
PTRATIO    0.0
RM         0.0
dtype: float64

今度はNOXを落とす。

# 回帰モデル作成
d = ['INDUS', 'DIS', 'RAD', 'AGE', 'ZN', 'TAX', 'NOX']
mod = sm.OLS(y_train, sm.add_constant(X_train.drop(d, axis=1)))

# 訓練
result = mod.fit() 

# 統計サマリを表示
print(result.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  PRICE   R-squared:                       0.740
Model:                            OLS   Adj. R-squared:                  0.736
Method:                 Least Squares   F-statistic:                     188.1
Date:                Thu, 23 May 2019   Prob (F-statistic):          9.72e-113
Time:                        17:53:56   Log-Likelihood:                -1199.1
No. Observations:                 404   AIC:                             2412.
Df Residuals:                     397   BIC:                             2440.
Df Model:                           6                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const         16.4182      4.515      3.637      0.000       7.543      25.294
CRIM          -0.0726      0.034     -2.138      0.033      -0.139      -0.006
CHAS           2.9178      0.941      3.101      0.002       1.068       4.768
RM             4.5315      0.454      9.976      0.000       3.638       5.425
PTRATIO       -1.0490      0.121     -8.695      0.000      -1.286      -0.812
B              0.0089      0.003      2.970      0.003       0.003       0.015
LSTAT         -0.4830      0.049     -9.903      0.000      -0.579      -0.387
==============================================================================
Omnibus:                      168.794   Durbin-Watson:                   1.973
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              933.196
Skew:                           1.711   Prob(JB):                    2.29e-203
Kurtosis:                       9.613   Cond. No.                     7.10e+03
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 7.1e+03. This might indicate that there are
strong multicollinearity or other numerical problems.
(np.sign(result.params[1:]) - np.sign(corr['PRICE'][:-1])).dropna()

B          0.0
CHAS       0.0
CRIM       0.0
LSTAT      0.0
PTRATIO    0.0
RM         0.0
dtype: float64

$t^2<2$の変数はないので、これで終了。決定係数は0.740、自由度調整済み決定係数は0.736となりました。

参考指標としてテストデータの決定係数を計算。

y_pred = result.predict(sm.add_constant(X_test.drop(d, axis=1)))

se = np.sum(np.square(y_test-y_pred))
st = np.sum(np.square(y_test-np.mean(y_test)))
R2 = 1-se/st
print('決定係数:', R2)

決定係数 0.5009870040610696

おわりに

今回は変数減少法で、各説明変数の有意性に基づいてモデルを作成しました。
他にも変数を増加させる方法や、増減を組み合わせた方法などがあります。Rだとこれらの作業を自動でやってくれるようですがpythonには無いようです。

また、予測性能だけでモデルの良し悪しを測るのであれば、説明変数選択規準を用いてモデルを決めても良いでしょう。この場合は上でやって来たように変数選択をしつつ、選択規準を満たすようなモデルを選ぶことになります。

43
53
3

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
43
53

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?