34
33

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

画像処理でコンクリートのひび割れ抽出

Last updated at Posted at 2023-09-18

はじめに

以下の論文のアルゴリズムを実装してみました。

Fujita, Y.; Nakamura, H.; Hamamoto, Y. Automatic and exact crack extraction from concrete surfaces using image processing techniques. J. Jpn. Soc. Civ. Eng. 2010, 66, 459–470.

結果

sample02.jpg

mask.jpg

sample01.jpg

mask.jpg

実装


import cv2
import numpy as np
from skimage.feature import hessian_matrix


def imread(filename):
    img = cv2.imread(filename)
    if img is None:
        raise FileNotFoundError()
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return img


def image_correction(img):
    """濃淡差や影を補正する."""
    img = cv2.GaussianBlur(img, (7, 7), 0)
    return img


def calc_hessian(img, sigma):
    Hxx, Hxy, Hyy = hessian_matrix(
        img, sigma=sigma, mode='mirror', order='xy',
        use_gaussian_derivatives=False)
    hessian = np.stack([Hxx, Hxy, Hxy, Hyy],
                       axis=2).reshape(*img.shape, 2, 2)
    return hessian


def hessian_emphasis(img, sigma=1.414, alpha=0.25):
    hessian = calc_hessian(img, sigma)
    eig_val, _ = np.linalg.eig(hessian)

    r = np.zeros_like(img, dtype=np.float64)
    for i in range(hessian.shape[0]):
        for j in range(hessian.shape[1]):
            # 各画素の固有値を取得
            lambda1, lambda2 = eig_val[i, j]

            # 小さい方をlambda2にする
            if lambda2 > lambda1:
                temp = lambda1
                lambda1 = lambda2
                lambda2 = temp
            if lambda1 <= 0:
                # 粒状構造
                lambda12 = abs(lambda2) + lambda1
            elif lambda2 < 0 < lambda1 < (abs(lambda2) / alpha):
                # 線状構造
                lambda12 = abs(lambda2) - lambda1 * alpha
            else:
                lambda12 = 0
            r[i, j] = sigma**2 * lambda12
    return r


def multiscale_hessian_emphasis(
        img,
        sigma=1.414,
        alpha=0.25,
        s=1.414,
        num_iteration=4
):
    R = []
    for i in range(num_iteration):
        r = hessian_emphasis(img, sigma=sigma * s**i, alpha=alpha)
        R.append(r)
    R = np.stack(R, axis=0)

    out = np.max(R, axis=0)
    out_scale = np.argmax(R, axis=0) + 1  # scaleを1から始める
    return out, out_scale


def stochastic_relaxation_method(img, alpha=1.0):
    """確率的弛緩法.

    Parameters
    ----------
    img : ndarray
        画素値は0-1に規格化.
        ひびの方が背景よりも輝度が高い.
    alpha : float
        補正用の重み.

    Returns
    -------
    out
        確率的弛緩法を適用後の画像.
    residual
        確率的弛緩法適用前後の2乗誤差.
    """
    P_c = np.log1p(img) / np.log1p(img.max())
    P_b = 1 - P_c

    kernels = [
        np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]]) / 3,
        np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]]) / 3,
        np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]]) / 3,
        np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) / 3
    ]

    Q_c = []
    for kernel in kernels:
        q = cv2.filter2D(P_c, -1, kernel, borderType=cv2.BORDER_DEFAULT)
        Q_c.append(q)
    Q_c = np.stack(Q_c, axis=0)
    Q_b = 1 - Q_c

    P_c_new = np.divide(
        alpha * P_c[None, ...] * Q_c,
        alpha * P_c[None, ...] * Q_c + P_b[None, ...] * Q_b,
        where=P_c[None, ...] * Q_c + P_b[None, ...] * Q_b != 0)

    out = np.max(P_c_new, axis=0)
    return out


def stepwise_threshold_processing(
        img, candidate,
        iter_stp=3,
        k_size=21,
        element=None):

    height, width = img.shape
    if element is None:
        element = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], np.uint8)

    completed = set()
    t = b = r = l = int((k_size - 1) * 0.5)
    for _ in range(iter_stp):
        flag_updated = False
        # 候補領域の外周の位置インデックスを得る
        dilated = cv2.dilate(candidate, element, iterations=1)
        outline = dilated - candidate
        ys, xs = (outline == 1).nonzero()

        result = candidate.copy()
        for x, y in zip(xs, ys):
            if (x, y) in completed:
                # 判定済み領域は除く
                continue
            # 注目画素近傍で大津の二値化のしきい値を求める
            xmin = max(x - l, 0)
            xmax = min(x + r + 1, width)
            ymin = max(y - t, 0)
            ymax = min(y + b + 1, height)
            patch = img[ymin:ymax, xmin:xmax]
            patch_candidate = candidate[ymin:ymax, xmin:xmax]

            if crack_judge(img, (x, y), patch, patch_candidate):
                # しきい値以上であれば新たな候補領域にする
                result[y, x] = 1.0
                flag_updated = True
            else:
                # しきい値未満で背景に確定する
                completed.add((x, y))

        candidate = result.copy()
        if not flag_updated:
            break
    return result


def trans2uint(img):
    img = ((img - img.min()) * (1 / (img.max() - img.min()) * 255)).astype('uint8')
    return img


def extract_crack_mean(patch, patch_candidate):
    mu_c = np.mean(patch[patch_candidate == 1])
    mu_b = np.mean(patch[patch_candidate == 0])
    return mu_c, mu_b


def crack_judge(img, coor, patch, patch_candidate, beta=0.9):
    x, y = coor
    mu_c, mu_b = extract_crack_mean(patch, patch_candidate)
    res = (abs(img[y, x] - mu_c) / abs(img[y, x] - mu_b + 1e-9) * beta) <= 1.0
    return res


def binarization(img):
    img = ((img - img.min()) * (1 / (img.max() - img.min()) * 255)).astype('uint8')
    _, res = cv2.threshold(
        img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    return res


def crack_segmentation(
    img,
    iter_mhe=4,
    iter_srm=2,
    iter_stp=10
):
    # ヘッシアンの固有値別に画像を補正
    img, _ = multiscale_hessian_emphasis(
        img,
        num_iteration=iter_mhe
    )
    emphasis_img = img.copy()
    emphasis_img = trans2uint(emphasis_img)

    # 確率的弛緩法でノイズを消す
    kernel = np.ones((5, 5), np.float32)
    img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
    for _ in range(iter_srm):
        img = stochastic_relaxation_method(img, 2.0)

    # 抽出候補を二値画像として得る
    candidate = binarization(img)
    candidate = candidate.astype(np.float32) / 255

    # 消しすぎた候補領域を段階的閾値処理で拡張する
    mask = stepwise_threshold_processing(
        emphasis_img, candidate, iter_stp=iter_stp, k_size=27)

    # 二値化
    mask = binarization(mask)
    return mask


def main():
    img = imread('sample02.jpg')

    # 画像の前処理
    img = image_correction(img)
    img = cv2.bitwise_not(img)
    # セグメンテーション
    mask = crack_segmentation(img)
    cv2.imwrite("mask.jpg", mask)


if __name__ == '__main__':
    main()

参考文献

  • ryousuke kimoto and yuusuke fujita and kei kawamura and yoshihiko hamamoto, "A Fundamental Study On Automated Crack Measurement for Concrete structures using Image Processing," Proceedings of the Fuzzy System Symposium., vol. 26, pp. 202-202, 2010, doi: 10.14864/fss.26.0.202.0.
    https://www.jstage.jst.go.jp/article/fss/26/0/26_0_202/_article/-char/ja/
  • Yusuke FUJITA and Yoshihiro MITANI and Yoshihiko HAMAMOTO, "A Method for Crack Extraction on Concrete Surfaces Using Image Processing Techniques.", Journal of The Japanese Society for Non-Destructive Inspection, vol. 56, no. 7, pp. 371-377, 2010, doi: 10.11396/jjsndi.56.371.
    https://www.jstage.jst.go.jp/article/jjsndi/56/7/56_7_371/_article/-char/ja/
  • Pang-jo CHUN and Nozomu KATAOKA and Chihiro MIWA and Kazuaki HASHIMOTO and Mitao OHGA, "CRACK DETECTION FROM AN IMAGE OF CONCRETE SURFACE WITH CONSIDERING STATISTICAL AND GEOMETRICAL CHARACTERISTICS," Journal of Japan Society of Civil Engineers, Ser. F3 (Civil Engineering Informatics)., vol. 70, no. 2, pp. I_1-I_8, 2014, doi: 10.2208/jscejcei.70.I_1.
    https://www.jstage.jst.go.jp/article/jscejcei/70/2/70_I_1/_article/-char/ja/
  • Y. Sato et al., "Tissue classification based on 3D local intensity structures for volume rendering," in IEEE Transactions on Visualization and Computer Graphics, vol. 6, no. 2, pp. 160-180, April-June 2000, doi: 10.1109/2945.856997.
    https://ieeexplore.ieee.org/document/856997
  • Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal. 1998 Jun;2(2):143-68. doi: 10.1016/s1361-8415(98)80009-1. PMID: 10646760.
    https://pubmed.ncbi.nlm.nih.gov/10646760/
  • Pang-jo CHUN and Yuri SHIMAMOTO and Kazuaki OKUBO and Chihiro MIWA and Mitao OHGA, "DEEP LEARNING AND RANDOM FOREST BASED CRACK DETECTION FROM AN IMAGE OF CONCRETE SURFACE," Journal of Japan Society of Civil Engineers, Ser. F3 (Civil Engineering Informatics)., vol. 73, no. 2, pp. I_297-I_307, 2017, doi: 10.2208/jscejcei.73.I_297.
    https://www.jstage.jst.go.jp/article/jscejcei/73/2/73_I_297/_article/-char/ja/
  • Barron, J.T. (2020). A Generalization of Otsu’s Method and Minimum Error Thresholding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_27.

以上

34
33
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
34
33

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?