LoginSignup
1
0

More than 1 year has passed since last update.

【PyTorch】RNN(Recurrent Neural Network)備忘録

Last updated at Posted at 2023-07-11

単語からそのカテゴリーを予測するRNN

PyTorch公式チュートリアルの人名から国籍を予測するRNN

事前準備

人名と国籍のテキストデータをダウンロードして、任意のフォルダに展開する
https://download.pytorch.org/tutorial/data.zip

ソースコード

処理の流れは以下のよう

  1. データを読み込む
  2. 基本的なAsciiコードのみになるよう変換
  3. Asciiコードの各文字に数字を割り当て、対応する数字で文字列をベクトル化
  4. RNNモデルを定義
  5. RNNモデルの学習
  6. 学習結果を可視化
  7. 特定の人名で推論

RNNで文字列を時系列で学習し、該当する国籍(数字)の確率をsoftmax関数で出力している。


#### 1. データ読み込みとユニコード正規化
# テキストデータは各国ごとに分かれていて、名前のリストが含まれている
from io import open
import glob
import os
import unicodedata
import string

def findFiles(path):
    return glob.glob(path)

print('読み込みデータ\n', findFiles('data/names/*.txt'))

all_letters = string.ascii_letters + " .,;'"
n_letters = len(all_letters)

# ユニコードを基本的なAsciiコード(128文字)に変換
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn' and c in all_letters
    )

# ファイルを受け取り、開いて中の文字列をAsciiコードに変換して、リストに格納
def readLines(filename):
    lines = open(filename, encoding='utf-8').read().strip().split('\n')
    return [unicodeToAscii(line) for line in lines]

# カテゴリー毎にファイルが分かれているため、カテゴリー毎に学習データを辞書に保存
category_lines = {}
all_categories = []
for filename in findFiles('data/names/*.txt'):
    category = os.path.splitext(os.path.basename(filename))[0]
    all_categories.append(category)
    lines = readLines(filename)
    category_lines[category] = lines

n_categories = len(all_categories)
print('\nすべてのカテゴリー : ', all_categories)
print('イタリアンに属する名前の一部 : ', category_lines['Italian'][:5])

#### 2. 単語をベクトル化
# 基本的なASCIIコードのみで、文字表を作成し、それぞれの文字に該当する数字を割り当て、文字列を数字のベクトル表現に変換する

import torch

# 基本的なASCIIコードの何番目にあたるかを返す
def letterToIndex(letter):
    return all_letters.find(letter)

# 一文字を一次元のテンソルに変換する
def letterToTensor(letter):
    tensor = torch.zeros(1, n_letters)
    tensor[0][letterToIndex(letter)] = 1
    return tensor

# 文字列をN次元のテンソルに変換する
def lineToTensor(line):
    tensor = torch.zeros(len(line), 1, n_letters)
    for li, letter in enumerate(line):
        tensor[li][0][letterToIndex(letter)] = 1
    return tensor

print('\n文字「J」のテンソル: ', letterToTensor('J'))
print('文字列「Jones」のテンソルサイズ : ', lineToTensor('Jones').size())

#### 3. RNNモデル定義
# シンプルなRNNを定義する

import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.h2o(hidden)
        # 最後にsoftmax関数で、カテゴリー(128個)分の確立を出力する
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

n_hidden = 128 # ASCIIコード(128文字)
rnn = RNN(n_letters, n_hidden, n_categories)

def categoryFromOutput(output):
    # 上位1個の要素を返す
    top_n, top_i = output.topk(1)
    category_i = top_i[0].item()
    return all_categories[category_i], category_i

#### 4. 学習

import random
import time
import math

# 交差エントロピー:Negative Log-Likelihood Loss
criterion = nn.NLLLoss()
# 学習率
learning_rate = 0.005

def train(category_tensor, line_tensor):
    # 隠れテンソルを0に初期化
    hidden = rnn.initHidden()
    # モデル内のパラメータの勾配を初期化
    rnn.zero_grad()

    # 隠れテンソルを保持して、入力テンソルの一部(一文字分)と前の隠れテンソルを毎回入力する
    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)

    # 損失を計算、ここで計算するのは、最終的に出力されたsoftmax関数の確率と正解の数字
    loss = criterion(output, category_tensor)
    # 誤差逆伝番
    loss.backward()

    # Add parameters' gradients to their values, multiplied by learning rate
    # パラメータの勾配を値に加算し、学習率を乗算する
    for p in rnn.parameters():
        p.data.add_(p.grad.data, alpha=-learning_rate)

    return output, loss.item()

# ランダムにデータを取り出すだけの関数
def randomTrainingExample():
    category = all_categories[random.randint(0, len(all_categories) - 1)]
    line = category_lines[category][random.randint(0, len(category_lines[category]) - 1)]
    category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
    line_tensor = lineToTensor(line)
    return category, line, category_tensor, line_tensor

# 経過時間を測るだけの関数
def timeSince(since):
    s = time.time() - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)

n_iters = 100000

current_loss = 0
all_losses = []
start = time.time()
for iter in range(1, n_iters + 1):
    category, line, category_tensor, line_tensor = randomTrainingExample()
    output, loss = train(category_tensor, line_tensor)
    current_loss += loss

    # 定期的に学習モデルによる予測精度の確認
    if iter % 5000 == 0:
        guess, guess_i = categoryFromOutput(output)
        correct = '' if guess == category else '✗ (%s)' % category
        print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))

    # 損失関数の値をリストに格納
    if iter % 1000 == 0:
        all_losses.append(current_loss / 1000)
        current_loss = 0


#### 5. 学習結果を可視化

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

plt.figure()
plt.plot(all_losses)

# 混同行列の作成
confusion = torch.zeros(n_categories, n_categories)
n_confusion = 10000

# Just return an output given a line
def evaluate(line_tensor):
    hidden = rnn.initHidden()

    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)

    return output

for i in range(n_confusion):
    category, line, category_tensor, line_tensor = randomTrainingExample()
    output = evaluate(line_tensor)
    guess, guess_i = categoryFromOutput(output)
    category_i = all_categories.index(category)
    confusion[category_i][guess_i] += 1

# Normalize by dividing every row by its sum
for i in range(n_categories):
    confusion[i] = confusion[i] / confusion[i].sum()

# Set up plot
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(confusion.numpy())
fig.colorbar(cax)

# Set up axes
ax.set_xticklabels([''] + all_categories, rotation=90)
ax.set_yticklabels([''] + all_categories)

# Force label at every tick
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

# sphinx_gallery_thumbnail_number = 2
plt.show()

#### 6. 推論

def predict(input_line, n_predictions=3):
    print('\n> %s' % input_line)
    with torch.no_grad():
        output = evaluate(lineToTensor(input_line))

        # Get top N categories
        topv, topi = output.topk(n_predictions, 1, True)
        predictions = []

        for i in range(n_predictions):
            value = topv[0][i].item()
            category_index = topi[0][i].item()
            print('(%.2f) %s' % (value, all_categories[category_index]))
            predictions.append([value, all_categories[category_index]])

predict('Dovesky')
predict('Jackson')
predict('Satoshi')

実行結果

定期的に測定された損失の値を左から順番に描写
RNN-loss-trend.jpg

各カテゴリー(国籍)ごとに学習データからランダムに選んだデータで、softmax関数からの確立を計算し、平均をヒートマップで描写
RNN-evaluate-result.jpg

> Dovesky
(-0.64) Czech
(-1.54) Russian
(-2.19) English

> Jackson
(-0.16) Scottish
(-2.68) English
(-3.72) Dutch

> Satoshi
(-0.59) Japanese
(-1.82) Arabic
(-1.85) Italian

単語からその次の文章を予測するRNN

下記サイトを参考に実装してみた。

import torch
from torch import nn

import numpy as np

#### 1. データ準備
text = ['hey how are you','good i am fine','have a nice day']

# 対象テキストをすべてつなげて、重複を削除し、使用されているすべての文字を取得
chars = set(''.join(text))
# それぞれに数字を割り当て、辞書型にする
int2char = dict(enumerate(chars))
char2int = {char: ind for ind, char in int2char.items()}
maxlen = len(max(text, key=len))

# すべての文字列の最後に半角空白を付与
for i in range(len(text)):
  while len(text[i])<maxlen:
      text[i] += ' '

# 入力データと正解ラベルのリストを作成
input_seq = []
target_seq = []
for i in range(len(text)):
    input_seq.append(text[i][:-1])
    target_seq.append(text[i][1:])
    print("Input Sequence: {}\nTarget Sequence: {}".format(input_seq[i], target_seq[i]))

for i in range(len(text)):
    input_seq[i] = [char2int[character] for character in input_seq[i]]
    target_seq[i] = [char2int[character] for character in target_seq[i]]

dict_size = len(char2int)
seq_len = maxlen - 1
batch_size = len(text)

#### 2. テキストデータをベクトル化

def one_hot_encode(sequence, dict_size, seq_len, batch_size):
    features = np.zeros((batch_size, seq_len, dict_size), dtype=np.float32)
    for i in range(batch_size):
        for u in range(seq_len):
            features[i, u, sequence[i][u]] = 1
    return features

input_seq = one_hot_encode(input_seq, dict_size, seq_len, batch_size)
input_seq = torch.from_numpy(input_seq)
target_seq = torch.Tensor(target_seq)

is_cuda = torch.cuda.is_available()
if is_cuda:
    device = torch.device("cuda")
    input_seq = input_seq.cuda() 
else:
    device = torch.device("cpu")

#### 3. モデル定義

class Model(nn.Module):
    def __init__(self, input_size, output_size, hidden_dim, n_layers):
        super(Model, self).__init__()

        self.hidden_dim = hidden_dim
        self.n_layers = n_layers

        self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)   
        self.fc = nn.Linear(hidden_dim, output_size)
    
    def forward(self, x):
        batch_size = x.size(0)
        hidden = self.init_hidden(batch_size)
        out, hidden = self.rnn(x, hidden)
        out = out.contiguous().view(-1, self.hidden_dim)
        out = self.fc(out)
        return out, hidden
    
    def init_hidden(self, batch_size):
        hidden = torch.zeros(self.n_layers, batch_size, self.hidden_dim)
        hidden = hidden.to(device)
        return hidden

model = Model(input_size=dict_size, output_size=dict_size, hidden_dim=12, n_layers=1)
model.to(device)

#### 4. 学習
n_epochs = 100
lr=0.01

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)

for epoch in range(1, n_epochs + 1):
    optimizer.zero_grad()
    output, hidden = model(input_seq)
    output = output.to('cpu')
    loss = criterion(output, target_seq.view(-1).long())
    loss.backward()
    optimizer.step()
    
    if epoch%10 == 0:
        print('Epoch: {}/{} '.format(epoch, n_epochs), end=' ')
        print("Loss: {:.4f}".format(loss.item()))


#### 5. 推論

def predict(model, character):
    character = np.array([[char2int[c] for c in character]])
    character = one_hot_encode(character, dict_size, character.shape[1], 1)
    character = torch.from_numpy(character)
    character = character.to(device)
    
    out, hidden = model(character)
    prob = nn.functional.softmax(out[-1], dim=0).data
    char_ind = torch.max(prob, dim=0)[1].item()

    return int2char[char_ind], hidden

def seq_iteration(model, out_len, start='hey'):
    model.eval()
    start = start.lower()
    chars = [ch for ch in start]
    size = out_len - len(chars)
    for ii in range(size):
        char, h = predict(model, chars)
        chars.append(char)

    return ''.join(chars)

print(seq_iteration(model, 15, 'good'))
print(seq_iteration(model, 15, 'have'))
print(seq_iteration(model, 15, 'hey'))
print(seq_iteration(model, 15, 'hide'))

実行結果

good i am fine
have a nice day
hey how are you
hide aa e am fi

まとめ

今回は、PyTorch公式チュートリアルのRNNを用いた人名から国籍を予測するAIを紹介した。

参考文献

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0