6
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

scikit-learnのソースからnumpyのコードを見つけ出して読む

Last updated at Posted at 2017-03-01

scikit-learnはよくできた機械学習ライブラリで、アルゴリズムを知らなくても使うことはできるのだが、実際のアルゴリズムを確認したい場合がある。たとえば、自分が想定している数式とscikit-learnが実際にやっているアルゴリズムが違っていると困る。本記事では、ライブラリの実装を追いかける方法を述べる。

やってみた

「NMFのアルゴリズムを調べたい」というお題を考える。
まずは、NMFのサンプルコードをググった結果を以下に示す。

import numpy as np
X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])

from sklearn.decomposition import NMF
model = NMF(n_components=2, init='random', random_state=0)
model.fit(X)

「fitは実際のところ何をやっているの?」を調べるのが本記事の目的だ。
iPythonを開いて、??コマンドを使う。

$ ipython
()
In [9]: model.fit??
Signature: model.fit(X, y=None, **params)
Source:
    def fit(self, X, y=None, **params):
        """Learn a NMF model for the data X.

        Parameters
        ----------
        X: {array-like, sparse matrix}, shape (n_samples, n_features)
            Data matrix to be decomposed

        Attributes
        ----------
        components_ : array-like, shape (n_components, n_features)
            Factorization matrix, sometimes called 'dictionary'.

        n_iter_ : int
            Actual number of iterations for the transform.

        Returns
        -------
        self
        """
        self.fit_transform(X, **params)
        return self

File:      ~/.pyenv/versions/anaconda3-4.0.0/lib/python3.5/site-packages/sklearn/decomposition/nmf.py
Type:      method

なるほど、fit_transformに渡しているのね。

In [12]: model.fit_transform??
Signature: model.fit_transform(X, y=None, W=None, H=None)
Source:
    def fit_transform(self, X, y=None, W=None, H=None):
        """Learn a NMF model for the data X and returns the transformed data.

        This is more efficient than calling fit followed by transform.

        Parameters
        ----------
        X: {array-like, sparse matrix}, shape (n_samples, n_features)
            Data matrix to be decomposed

        W : array-like, shape (n_samples, n_components)
            If init='custom', it is used as initial guess for the solution.

        H : array-like, shape (n_components, n_features)
            If init='custom', it is used as initial guess for the solution.

        Attributes
        ----------
        components_ : array-like, shape (n_components, n_features)
            Factorization matrix, sometimes called 'dictionary'.

        n_iter_ : int
            Actual number of iterations for the transform.

        Returns
        -------
        W: array, shape (n_samples, n_components)
            Transformed data.
        """
        X = check_array(X, accept_sparse=('csr', 'csc'))

        W, H, n_iter_ = non_negative_factorization(
            X=X, W=W, H=H, n_components=self.n_components,
            init=self.init, update_H=True, solver=self.solver,
            tol=self.tol, max_iter=self.max_iter, alpha=self.alpha,
            l1_ratio=self.l1_ratio, regularization='both',
            random_state=self.random_state, verbose=self.verbose,
            shuffle=self.shuffle,
            nls_max_iter=self.nls_max_iter, sparseness=self.sparseness,
            beta=self.beta, eta=self.eta)

        if self.solver == 'pg':
            self.comp_sparseness_ = _sparseness(H.ravel())
            self.data_sparseness_ = _sparseness(W.ravel())

        self.reconstruction_err_ = _safe_compute_error(X, W, H)

        self.n_components_ = H.shape[0]
        self.components_ = H
        self.n_iter_ = n_iter_

        return W

File:      ~/.pyenv/versions/anaconda3-4.0.0/lib/python3.5/site-packages/sklearn/decomposition/nmf.py
Type:      method

実質の学習は、non_negative_factorizationがやっているらしい。
さらに掘り進める。ところが以下のようになる。

In [13]: model.non_negative_factorization??
Object `model.non_negative_factorization` not found.

どうすればいいのだろうか?
次の1行に注目しよう。

File:      ~/.pyenv/versions/anaconda3-4.0.0/lib/python3.5/site-packages/sklearn/decomposition/nmf.py

sklearn/decomposition/nmf.pyにありますよ、ということがわかる。
したがって、以下のようにやれば、いまくいく。

In [14]: import sklearn.decomposition
In [15]: sklearn.decomposition.nmf.non_negative_factorization??
Signature: sklearn.decomposition.nmf.non_negative_factorization(X, W=None, H=None, n_components=None, init='random', update_H=True, sol
Source:
def non_negative_factorization(X, W=None, H=None, n_components=None,
                               init='random', update_H=True, solver='cd',
                               tol=1e-4, max_iter=200, alpha=0., l1_ratio=0.,
                               regularization=None, random_state=None,
                               verbose=0, shuffle=False, nls_max_iter=2000,
                               sparseness=None, beta=1, eta=0.1):
    """Compute Non-negative Matrix Factorization (NMF)

    Find two non-negative matrices (W, H) whose product approximates the non-
    negative matrix X. This factorization can be used for example for
    dimensionality reduction, source separation or topic extraction.

    The objective function is::

        0.5 * ||X - WH||_Fro^2
        + alpha * l1_ratio * ||vec(W)||_1
        + alpha * l1_ratio * ||vec(H)||_1
        + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
        + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

    Where::

        ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
        ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

    The objective function is minimized with an alternating minimization of W
    and H. If H is given and update_H=False, it solves for W only.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Constant matrix.

    W : array-like, shape (n_samples, n_components)
        If init='custom', it is used as initial guess for the solution.

    H : array-like, shape (n_components, n_features)
        If init='custom', it is used as initial guess for the solution.
        If update_H=False, it is used as a constant, to solve for W only.

    n_components : integer
        Number of components, if n_components is not set all features
        are kept.

    init :  None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom'
        Method used to initialize the procedure.
        Default: 'nndsvd' if n_components < n_features, otherwise random.
        Valid options:

        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)

        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)

        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)

        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

        - 'custom': use custom matrices W and H

    update_H : boolean, default: True
        Set to True, both W and H will be estimated from initial guesses.
        Set to False, only W will be estimated.

    solver : 'pg' | 'cd'
        Numerical solver to use:
        'pg' is a (deprecated) Projected Gradient solver.
        'cd' is a Coordinate Descent solver.

    tol : float, default: 1e-4
        Tolerance of the stopping condition.

    max_iter : integer, default: 200
        Maximum number of iterations before timing out.

    alpha : double, default: 0.
        Constant that multiplies the regularization terms.

    l1_ratio : double, default: 0.
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an elementwise L2 penalty
        (aka Frobenius Norm).
        For l1_ratio = 1 it is an elementwise L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

    regularization : 'both' | 'components' | 'transformation' | None
        Select whether the regularization affects the components (H), the
        transformation (W), both or none of them.

    random_state : integer seed, RandomState instance, or None (default)
        Random number generator seed control.

    verbose : integer, default: 0
        The verbosity level.

    shuffle : boolean, default: False
        If true, randomize the order of coordinates in the CD solver.

    nls_max_iter : integer, default: 2000
        Number of iterations in NLS subproblem.
        Used only in the deprecated 'pg' solver.

    sparseness : 'data' | 'components' | None, default: None
        Where to enforce sparsity in the model.
        Used only in the deprecated 'pg' solver.

    beta : double, default: 1
        Degree of sparseness, if sparseness is not None. Larger values mean
        more sparseness. Used only in the deprecated 'pg' solver.

    eta : double, default: 0.1
        Degree of correctness to maintain, if sparsity is not None. Smaller
        values mean larger error. Used only in the deprecated 'pg' solver.

    Returns
    -------
    W : array-like, shape (n_samples, n_components)
        Solution to the non-negative least squares problem.

    H : array-like, shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    n_iter : int
        Actual number of iterations.

    References
    ----------
    C.-J. Lin. Projected gradient methods for non-negative matrix
    factorization. Neural Computation, 19(2007), 2756-2779.
    http://www.csie.ntu.edu.tw/~cjlin/nmf/

    Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for
    large scale nonnegative matrix and tensor factorizations."
    IEICE transactions on fundamentals of electronics, communications and
    computer sciences 92.3: 708-721, 2009.
    """

    X = check_array(X, accept_sparse=('csr', 'csc'))
    check_non_negative(X, "NMF (input X)")
    _check_string_param(sparseness, solver)

    n_samples, n_features = X.shape
    if n_components is None:
        n_components = n_features

    if not isinstance(n_components, INTEGER_TYPES) or n_components <= 0:
        raise ValueError("Number of components must be a positive integer;"
                         " got (n_components=%r)" % n_components)
    if not isinstance(max_iter, INTEGER_TYPES) or max_iter < 0:
        raise ValueError("Maximum number of iterations must be a positive integer;"
                         " got (max_iter=%r)" % max_iter)
    if not isinstance(tol, numbers.Number) or tol < 0:
        raise ValueError("Tolerance for stopping criteria must be "
                         "positive; got (tol=%r)" % tol)

    # check W and H, or initialize them
    if init == 'custom' and update_H:
        _check_init(H, (n_components, n_features), "NMF (input H)")
        _check_init(W, (n_samples, n_components), "NMF (input W)")
    elif not update_H:
        _check_init(H, (n_components, n_features), "NMF (input H)")
        W = np.zeros((n_samples, n_components))
    else:
        W, H = _initialize_nmf(X, n_components, init=init,
                               random_state=random_state)

    if solver == 'pg':
        warnings.warn("'pg' solver will be removed in release 0.19."
                      " Use 'cd' solver instead.", DeprecationWarning)
        if update_H:  # fit_transform
            W, H, n_iter = _fit_projected_gradient(X, W, H, tol,
                                                   max_iter,
                                                   nls_max_iter,
                                                   alpha, l1_ratio,
                                                   sparseness,
                                                   beta, eta)
        else:  # transform
            W, H, n_iter = _update_projected_gradient_w(X, W, H,
                                                        tol, nls_max_iter,
                                                        alpha, l1_ratio,
                                                        sparseness, beta,
                                                        eta)
    elif solver == 'cd':
        W, H, n_iter = _fit_coordinate_descent(X, W, H, tol,
                                               max_iter,
                                               alpha, l1_ratio,
                                               regularization,
                                               update_H=update_H,
                                               verbose=verbose,
                                               shuffle=shuffle,
                                               random_state=random_state)
    else:
        raise ValueError("Invalid solver parameter '%s'." % solver)

    if n_iter == max_iter:
        warnings.warn("Maximum number of iteration %d reached. Increase it to"
                      " improve convergence." % max_iter, ConvergenceWarning)

    return W, H, n_iter
File:      ~/.pyenv/versions/anaconda3-4.0.0/lib/python3.5/site-packages/sklearn/decomposition/nmf.py
Type:      function

この調子で掘り進めよう

In [19]: sklearn.decomposition.nmf._update_projected_gradient_w??
Signature: sklearn.decomposition.nmf._update_projected_gradient_w(X, W, H, tolW, nls_max_iter, alpha, l1_ratio, sparse
Source:
def _update_projected_gradient_w(X, W, H, tolW, nls_max_iter, alpha, l1_ratio,
                                 sparseness, beta, eta):
    """Helper function for _fit_projected_gradient"""
    n_samples, n_features = X.shape
    n_components_ = H.shape[0]

    if sparseness is None:
        Wt, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, nls_max_iter,
                                           alpha=alpha, l1_ratio=l1_ratio)
    elif sparseness == 'data':
        Wt, gradW, iterW = _nls_subproblem(
            safe_vstack([X.T, np.zeros((1, n_samples))]),
            safe_vstack([H.T, np.sqrt(beta) * np.ones((1,
                         n_components_))]),
            W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio)
    elif sparseness == 'components':
        Wt, gradW, iterW = _nls_subproblem(
            safe_vstack([X.T,
                         np.zeros((n_components_, n_samples))]),
            safe_vstack([H.T,
                         np.sqrt(eta) * np.eye(n_components_)]),
            W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio)

    return Wt.T, gradW.T, iterW

File:      ~/.pyenv/versions/anaconda3-4.0.0/lib/python3.5/site-packages/sklearn/decomposition/nmf.py
Type:      function

_nls_subproblemが気になる

In [20]: sklearn.decomposition.nmf._nls_subproblem??
Signature: sklearn.decomposition.nmf._nls_subproblem(V, W, H, tol, max_iter, alpha=0.0, l1_ratio=0.0, sigma=0.01, beta
Source:
def _nls_subproblem(V, W, H, tol, max_iter, alpha=0., l1_ratio=0.,
                    sigma=0.01, beta=0.1):
    """Non-negative least square solver

    Solves a non-negative least squares subproblem using the projected
    gradient descent algorithm.

    Parameters
    ----------
    V : array-like, shape (n_samples, n_features)
        Constant matrix.

    W : array-like, shape (n_samples, n_components)
        Constant matrix.

    H : array-like, shape (n_components, n_features)
        Initial guess for the solution.

    tol : float
        Tolerance of the stopping condition.

    max_iter : int
        Maximum number of iterations before timing out.

    alpha : double, default: 0.
        Constant that multiplies the regularization terms. Set it to zero to
        have no regularization.

    l1_ratio : double, default: 0.
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an L2 penalty.
        For l1_ratio = 1 it is an L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

    sigma : float
        Constant used in the sufficient decrease condition checked by the line
        search.  Smaller values lead to a looser sufficient decrease condition,
        thus reducing the time taken by the line search, but potentially
        increasing the number of iterations of the projected gradient
        procedure. 0.01 is a commonly used value in the optimization
        literature.

    beta : float
        Factor by which the step size is decreased (resp. increased) until
        (resp. as long as) the sufficient decrease condition is satisfied.
        Larger values allow to find a better step size but lead to longer line
        search. 0.1 is a commonly used value in the optimization literature.

    Returns
    -------
    H : array-like, shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    grad : array-like, shape (n_components, n_features)
        The gradient.

    n_iter : int
        The number of iterations done by the algorithm.

    References
    ----------
    C.-J. Lin. Projected gradient methods for non-negative matrix
    factorization. Neural Computation, 19(2007), 2756-2779.
    http://www.csie.ntu.edu.tw/~cjlin/nmf/
    """
    WtV = safe_sparse_dot(W.T, V)
    WtW = fast_dot(W.T, W)

    # values justified in the paper (alpha is renamed gamma)
    gamma = 1
    for n_iter in range(1, max_iter + 1):
        grad = np.dot(WtW, H) - WtV
        if alpha > 0 and l1_ratio == 1.:
            grad += alpha
        elif alpha > 0:
            grad += alpha * (l1_ratio + (1 - l1_ratio) * H)

        # The following multiplication with a boolean array is more than twice
        # as fast as indexing into grad.
        if norm(grad * np.logical_or(grad < 0, H > 0)) < tol:
            break

        Hp = H

        for inner_iter in range(20):
            # Gradient step.
            Hn = H - gamma * grad
            # Projection step.
            Hn *= Hn > 0
            d = Hn - H
            gradd = np.dot(grad.ravel(), d.ravel())
            dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel())
            suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0
            if inner_iter == 0:
                decr_gamma = not suff_decr

            if decr_gamma:
                if suff_decr:
                    H = Hn
                    break
                else:
                    gamma *= beta
            elif not suff_decr or (Hp == Hn).all():
                H = Hp
                break
            else:
                gamma /= beta
                Hp = Hn

    if n_iter == max_iter:
        warnings.warn("Iteration limit reached in nls subproblem.")

    return H, grad, n_iter

File:      ~/.pyenv/versions/anaconda3-4.0.0/lib/python3.5/site-packages/sklearn/decomposition/nmf.py
Type:      function

最終的にnumpyのコード、
つまり実際の計算をやっている部分にたどり着くことができた。

まとめ

iPythonでひたすら辿っていくと、numpyのコードが確認できる。

6
7
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
6
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?