0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

pythonで3次元球内に一様に分布する点の座標とその原点からの距離を求める。

Last updated at Posted at 2023-01-27

単位球内に一様に分布する点の座標(x,y,z)は、次の3つの一様乱数

\begin{equation}
\begin{cases}
\theta & (-1\leq \theta\leq 1) \\
\phi & (0\leq \phi\leq 2\pi) \\
r & (0 \leq r \leq 1)

\end{cases}
\end{equation}

を用いて以下のように求められます。

\begin{equation}
\begin{cases}
x = r^{\frac{1}{3}}\sqrt{1-\theta^{2}}\cos\phi \\
y = r^{\frac{1}{3}}\sqrt{1-\theta^{2}}\sin\phi \\
z = r^{\frac{1}{3}}\theta

\end{cases}
\end{equation}

これをpythonで実装すると以下のようになります。

import numpy as np

xl=[]
yl=[]
zl=[]

for i in range(5000):
    theta = np.random.uniform(-1, 1)
    phi = np.random.uniform(0, 2*np.pi)
    r = np.random.uniform(0, 1)
    x=r**(1/3)*(1-theta**2)*np.cos(phi)
    y=r**(1/3)*(1-theta**2)*np.sin(phi)
    z=r**(1/3)*theta
    xl.append(x)
    yl.append(y)
    zl.append(z)

3次元の散布図は以下のコードで描くことができます。

import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
ax.scatter(xl, yl, zl, s=1)
plt.show()

スクリーンショット 2023-01-27 21.59.03.png

次のようにして球内に分布する点の距離のリストを得ることができます。

distance=[]
for i in range(len(xl)):
    dis = np.sqrt(xl[i]**2 + yl[i]**2 + zl[i]**2)
    distance.append(dis) 

dist = 1000
distlist = list(map(lambda x: x *dist , distance))

参考

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?