python3
Chainer
深層学習
MNIST

MNISTをChainerで深層学習 NN/CNN/RNN

備忘録を兼ねて、ChainerでNN、CNN、RNNのモデルを作成し、MNISTのディープラーニングのスクリプトを作成します。

https://github.com/gatchaman-20140215/machine-learning/blob/master/Google%20Colaboratory/chainer_mnist_nn_cnn_rnn.ipynb

事前準備

Google ColaboratoryへのChainerの導入

GPUを使用できるよう、下記のコマンドで必要なモジュールをインストールします。

!apt-get install -y -qq libcusparse8.0 libnvrtc8.0 libnvtoolsext1
!ln -snf /usr/lib/x86_64-linux-gnu/libnvrtc-builtins.so.8.0 /usr/lib/x86_64-linux-gnu/libnvrtc-builtins.so
!pip install cupy-cuda80==4.0.0b4 
!pip install chainer==4.0.0b4

必要なモジュールの読み込み

import numpy as np
import chainer
from chainer import cuda, Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.datasets import tuple_dataset
from chainer import training
from chainer.training import extensions

MNISTの読み込み

train, test = datasets.get_mnist(ndim=3)

データを確認します。

%matplotlib inline
import matplotlib.pyplot as plt

plt.imshow(np.array(train[0][0][0], dtype=np.float32), cmap='gray')
print('この画像データのラベルは{:0d}です。'.format(train[0][1]))

この画像データのラベルは5です。
five.png

ニューラルネットワークでの学習

モデルの定義

class NN(Chain):
    def __init__(self, n_in, n_units, n_out):
        super(NN, self).__init__()
        with self.init_scope():
            self.l1 = L.Linear(n_in, n_units)
            self.l2 = L.Linear(n_units, n_units)
            self.l3 = L.Linear(n_units, n_out)

    def __call__(self, x):
        h1 = F.relu(self.l1(x))
        h2 = F.relu(self.l2(h1))
        return self.l3(h2)

定数の定義

gpu_device = 0
epoch = 30
batch_size = 512
frequency = -1
n_in = 784
n_units = 100
n_out = 10

学習

model = L.Classifier(NN(n_in, n_units, n_out))
chainer.cuda.get_device_from_id(0)
model.to_gpu()

optimizer = chainer.optimizers.Adam()
optimizer.setup(model)

train_iter = chainer.iterators.SerialIterator(train, batch_size)
test_iter = chainer.iterators.SerialIterator(test, batch_size, repeat=False, shuffle=False)

updater = training.StandardUpdater(train_iter, optimizer, device=gpu_device)
trainer = training.Trainer(updater, (epoch, 'epoch'))

trainer.extend(extensions.Evaluator(test_iter, model,device=gpu_device))
trainer.extend(extensions.dump_graph('main/loss'))

frequency = epoch if frequency == -1 else max(1, frequency)
trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch'))
trainer.extend(extensions.LogReport())
trainer.extend(
    extensions.PlotReport(['main/loss', 'validation/main/loss'],
                          'epoch', file_name='loss.png'))
trainer.extend(
    extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'],
                          'epoch', file_name='accuracy.png'))
trainer.extend(extensions.PrintReport(
    ['epoch', 'main/loss', 'validation/main/loss',
     'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

trainer.run()

実行結果

epoch       main/loss   validation/main/loss  main/accuracy  validation/main/accuracy  elapsed_time
1           0.609557    0.271625              0.83986        0.921639                  2.24247       
2           0.223956    0.190223              0.936165       0.942412                  3.91926       
3           0.169551    0.155889              0.95229        0.952826                  5.49803       
4           0.138876    0.130223              0.960069       0.960507                  7.12243       
5           0.114769    0.117665              0.966947       0.964746                  8.73528       
6           0.096983    0.113826              0.971994       0.965614                  10.3822       
7           0.0863535   0.0950723             0.97476        0.972306                  11.9649       
8           0.0738427   0.0943972             0.978816       0.971743                  13.6363       
9           0.0651506   0.0920507             0.98107        0.971375                  15.2552       
10          0.0575137   0.0831638             0.983407       0.97492                   16.8571       
11          0.0515834   0.0856705             0.984938       0.974575                  18.4335       
12          0.0451553   0.0791185             0.986946       0.975506                  20.0122       
13          0.0401197   0.0787027             0.988732       0.976201                  21.5908       
14          0.0361692   0.0773779             0.989934       0.976982                  23.1778       
15          0.0320661   0.0788221             0.991319       0.975615                  24.7676       
16          0.0292983   0.0776353             0.99187        0.976459                  26.4491       
17          0.0255289   0.0842461             0.99328        0.976017                  28.0744       
18          0.0226313   0.0798943             0.994308       0.976005                  29.6888       
19          0.0198879   0.0758416             0.995276       0.977935                  31.3053       
20          0.0175719   0.079733              0.99581        0.977372                  32.9155       
21          0.0158291   0.0838353             0.996244       0.976384                  34.5392       
22          0.015166    0.0863985             0.996524       0.975776                  36.1806       
23          0.013793    0.0871418             0.996578       0.975494                  37.7816       
24          0.0118357   0.0869616             0.997362       0.975982                  39.3604       
25          0.00977673  0.0892306             0.998013       0.976373                  40.9641       
26          0.00908512  0.0872242             0.998197       0.976298                  42.679        
27          0.0102062   0.0899191             0.997732       0.97708                   44.2737       
28          0.00712254  0.087929              0.998781       0.978315                  45.8738       
29          0.00570363  0.0855932             0.999182       0.977263                  47.4935       
30          0.00537472  0.0911612             0.999299       0.977752                  49.1054  

学習曲線

from IPython.display import Image, display_png

display_png(Image('result/loss.png'))
display_png(Image('result/accuracy.png'))

nn-loss.png
nn-learn.png

予測

import cupy as cp

plt.imshow(np.array(test[0][0][0], dtype=np.float32), cmap='gray')
print('この画像データのラベルは{:0d}です。'.format(test[0][1]))
prediction = model.predictor(cp.array(test[0][0][0]).reshape(1, 784))
probability = chainer.cuda.to_cpu(F.softmax(prediction).data[0])
np.set_printoptions(precision=20, floatmode='fixed', suppress=True)
print(probability)
この画像データのラベルは7です。
[0.00000000372259179038 0.00000000087596779830 0.00000003106548618348
 0.00004456961323739961 0.00000000000002767143 0.00000000147911294324
 0.00000000000000000014 0.99994862079620361328 0.00000134408105623152
 0.00000531150408278336]

seven.png

畳み込みニューラルネットワークでの学習

モデルの定義

class CNN(Chain):
    def __init__(self):
        super(CNN, self).__init__()
        with self.init_scope():
            self.cn1 = L.Convolution2D(1, 20, 5)
            self.cn2 = L.Convolution2D(20, 50, 5)
            self.fc1 = L.Linear(800, 500)
            self.fc2 = L.Linear(500, 10)

    def __call__(self, x):
        h1 = F.max_pooling_2d(F.relu(self.cn1(x)), 2)
        h2 = F.max_pooling_2d(F.relu(self.cn2(h1)), 2)
        h3 = F.dropout(F.relu(self.fc1(h2)))
        return self.fc2(h3)

定数の定義

gpu_device = 0
epoch = 30
batch_size = 512
frequency = -1

学習

model = L.Classifier(CNN())
chainer.cuda.get_device_from_id(0)
model.to_gpu()

optimizer = chainer.optimizers.Adam()
optimizer.setup(model)

train_iter = chainer.iterators.SerialIterator(train, batch_size)
test_iter = chainer.iterators.SerialIterator(test, batch_size, repeat=False, shuffle=False)

updater = training.StandardUpdater(train_iter, optimizer, device=gpu_device)
trainer = training.Trainer(updater, (epoch, 'epoch'))

trainer.extend(extensions.Evaluator(test_iter, model,device=gpu_device))
trainer.extend(extensions.dump_graph('main/loss'))

frequency = epoch if frequency == -1 else max(1, frequency)
trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch'))
trainer.extend(extensions.LogReport())
trainer.extend(
    extensions.PlotReport(['main/loss', 'validation/main/loss'],
                          'epoch', file_name='loss.png'))
trainer.extend(
    extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'],
                          'epoch', file_name='accuracy.png'))
trainer.extend(extensions.PrintReport(
    ['epoch', 'main/loss', 'validation/main/loss',
     'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

trainer.run()
epoch       main/loss   validation/main/loss  main/accuracy  validation/main/accuracy  elapsed_time
1           0.354028    0.0805555             0.892197       0.974782                  2.43793       
2           0.0861291   0.0457051             0.97476        0.984651                  5.02699       
3           0.0603717   0.0358304             0.98152        0.98785                   7.64132       
4           0.0447528   0.029547              0.986278       0.990659                  10.286        
5           0.0393856   0.0300916             0.98748        0.990734                  12.9046       
6           0.0335107   0.0276662             0.98939        0.991355                  15.5664       
7           0.028251    0.0264475             0.991169       0.990682                  18.4082       
8           0.024206    0.0245272             0.992405       0.991234                  21.0302       
9           0.0213547   0.0207464             0.993339       0.992699                  23.6642       
10          0.0193615   0.0218372             0.993924       0.99271                   26.3024       
11          0.0163818   0.0214707             0.995051       0.992613                  28.9265       
12          0.0147773   0.0218644             0.995292       0.992894                  31.5535       
13          0.0131757   0.0236539             0.99591        0.992124                  34.1893       
14          0.0123087   0.0218821             0.99606        0.99259                   36.9303       
15          0.0108798   0.0218928             0.996595       0.992515                  39.5811       
16          0.00979711  0.0227453             0.996862       0.992722                  42.2415       
17          0.0107679   0.0222965             0.996557       0.992992                  44.9246       
18          0.00846383  0.0256104             0.997246       0.991625                  47.5767       
19          0.0078571   0.0252699             0.997429       0.991636                  50.2381       
20          0.00736991  0.0229966             0.99763        0.992905                  52.8978       
21          0.00675241  0.0229066             0.997963       0.992894                  55.5817       
22          0.00664717  0.0212612             0.997997       0.993578                  58.3709       
23          0.00643474  0.0251418             0.997963       0.99205                   61.0157       
24          0.00604594  0.0260536             0.997947       0.992015                  63.663        
25          0.00545904  0.0283221             0.998214       0.993003                  66.3088       
26          0.00546739  0.0324786             0.998047       0.991136                  68.9498       
27          0.00519143  0.0309123             0.998245       0.992124                  71.6131       
28          0.0049064   0.0308791             0.998264       0.991257                  74.2487       
29          0.00435375  0.0302761             0.998448       0.99194                   76.9035       
30          0.00312136  0.0303936             0.999115       0.992503                  79.5643 

学習曲線

from IPython.display import Image, display_png

display_png(Image('result/loss.png'))
display_png(Image('result/accuracy.png'))

cnn-loss.png
cnn-learn.png

予測

import cupy as cp

plt.imshow(np.array(test[0][0][0], dtype=np.float32), cmap='gray')
print('この画像データのラベルは{:0d}です。'.format(test[0][1]))
prediction = model.predictor(cp.array(test[0][0][0]).reshape(1, 1, 28, 28))
probability = chainer.cuda.to_cpu(F.softmax(prediction).data[0])
np.set_printoptions(precision=20, floatmode='fixed', suppress=True)
print(probability)
この画像データのラベルは7です。
[0.00000000000034654969 0.00000000001631320079 0.00000000017968711241
 0.00000000000952125098 0.00000000180500603353 0.00000000000172482167
 0.00000000000000372396 1.00000000000000000000 0.00000000000094331075
 0.00000000918344689183]

seven.png

リカレントニューラルネットワークでの学習

定数の定義

gpu_device = 0
epoch = 30
batch_size = 500
frequency = -1

モデルの定義

class RNN(Chain):
    def __init__(self):
        super(RNN, self).__init__()
        with self.init_scope():
            self.w1 = L.Linear(784, 100)
            self.h1 = L.Linear(100, 100)
            self.o = L.Linear(100, 10)

    def reset_state(self):
        self.last_z = chainer.Variable(cp.zeros((batch_size, 100), dtype=np.float32))

    def __call__(self, x):
        z = F.relu(self.w1(x) + self.h1(self.last_z))
        self.last_z = z
        y = F.relu(self.o(z))
        return y

学習

rnn = RNN()
rnn.reset_state()
model = L.Classifier(rnn)
chainer.cuda.get_device_from_id(0)
model.to_gpu()

optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.GradientClipping(10.0))

train_iter = chainer.iterators.SerialIterator(train, batch_size)
test_iter = chainer.iterators.SerialIterator(test, batch_size, repeat=False, shuffle=False)

updater = training.StandardUpdater(train_iter, optimizer, device=gpu_device)
trainer = training.Trainer(updater, (epoch, 'epoch'))

trainer.extend(extensions.Evaluator(test_iter, model,device=gpu_device))
trainer.extend(extensions.dump_graph('main/loss'))

frequency = epoch if frequency == -1 else max(1, frequency)
trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch'))
trainer.extend(extensions.LogReport())
trainer.extend(
    extensions.PlotReport(['main/loss', 'validation/main/loss'],
                          'epoch', file_name='loss.png'))
trainer.extend(
    extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'],
                          'epoch', file_name='accuracy.png'))
trainer.extend(extensions.PrintReport(
    ['epoch', 'main/loss', 'validation/main/loss',
     'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

trainer.run()
epoch       main/loss   validation/main/loss  main/accuracy  validation/main/accuracy  elapsed_time
1           1.12647     0.67986               0.676317       0.7929                    14.2889       
2           0.637657    0.561256              0.7971         0.8164                    28.7837       
3           0.554199    0.508853              0.816633       0.8303                    43.3512       
4           0.514805    0.482239              0.826266       0.8361                    57.8673       
5           0.482919    0.462028              0.834117       0.8405                    72.5115       
6           0.459542    0.436305              0.84055        0.8471                    87.0379       
7           0.439237    0.422526              0.845017       0.8518                    101.544       
8           0.422248    0.407439              0.850083       0.8552                    116.104       
9           0.408515    0.397422              0.853317       0.8583                    130.608       
10          0.395496    0.386185              0.856666       0.8606                    145.18        
11          0.386715    0.383238              0.859083       0.8604                    159.626       
12          0.376893    0.380003              0.861716       0.8609                    174.196       
13          0.369096    0.366671              0.863667       0.8654                    188.681       
14          0.36017     0.360889              0.865816       0.8671                    203.158       
15          0.35465     0.358045              0.867233       0.8669                    217.71        
16          0.348177    0.354098              0.8692         0.8683                    232.215       
17          0.341731    0.346596              0.870567       0.871                     246.759       
18          0.335474    0.343758              0.872          0.8717                    261.409       
19          0.330673    0.341848              0.873383       0.8716                    275.912       
20          0.325912    0.337807              0.874617       0.8728                    290.407       
21          0.316205    0.159358              0.879183       0.9563                    305.075       
22          0.094005    0.109159              0.97395        0.9694                    319.652       
23          0.0830744   0.107424              0.976567       0.969                     334.165       
24          0.0779403   0.100136              0.977933       0.9712                    348.725       
25          0.0724973   0.0975639             0.97945        0.9719                    363.134       
26          0.0687905   0.0933854             0.980384       0.972                     377.548       
27          0.0643198   0.0951944             0.98205        0.9713                    392.084       
28          0.060734    0.0910737             0.98275        0.9726                    406.522       
29          0.0582916   0.089033              0.9841         0.9735                    421.009       
30          0.0541574   0.0874746             0.984867       0.9745                    435.481 

学習曲線

from IPython.display import Image, display_png

display_png(Image('result/loss.png'))
display_png(Image('result/accuracy.png'))

rnn-loss.png
rnn-learn.png

参考

リカレントニューラルネットワークのChainerでの実装について、下記ページを参考にいたしました。
https://qiita.com/knok/items/3077230a9dc6b7979173