4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Halideによるプログラムのパフォーマンス計測

Last updated at Posted at 2017-11-23

#はじめに
Halideに関するリンクは以下の記事にまとめてあります.
Halideによる画像処理まとめ

備考
サンプルコード中,OpenCVによるHalideプログラミングの開発支援で書いたOpenCVのコードを使って可視化していますが,Halideで書いたプログラミングに必須なものではありません.

#時間計測の方法

  • 時間計測はrealizeなどのスケジューラを書いた場所でやること.
  • Funcを含むとJITコンパイラでコンパイルしている計算時間まで含まれることになる.

とくに,単純な処理だとその影響が顕著に出る.
以下の例はバイラテラルフィルタ(BF)と単純加算で計測した例.

  • Funcを含むBFは1.5秒
  • Funcを含まないBFは1秒
  • Funcを含む加算は80ms
  • Funcを含まない加算は0.3ms
#include <opencv2/opencv.hpp>
#pragma comment(lib, "opencv_core320.lib")
#pragma comment(lib, "opencv_imgcodecs320.lib")
#pragma comment(lib, "opencv_highgui320.lib")

#include "include/Halide.h"
#pragma comment(lib, "Halide.lib")

using namespace Halide;

//中でcv::imreadをコール.
Buffer<uint8_t> load_image(cv::String name, int flags = 1);

Func add(Buffer<uint8_t>& src, int add)
{
	Var x("x"), y("y"), c("c");
	Func output("output");
	output(x, y, c) = cast<uint8_t>(clamp(cast<int16_t>(src(x, y, c)) + (short)add, 0, 255));
	return output;
}

Func bilateral_filter_color(Buffer<uint8_t>& src, int rad, float sigma_s, float sigma_c)
{
	Var x("x"), y("y"), c("c");
	Func clamped = BoundaryConditions::repeat_edge(src);

	Func input_float("input_float");
	input_float(x, y, c) = cast<float>(clamped(x, y, c));

	Expr ds = -1.f / (2.f*sigma_s*sigma_s);
	Expr dc = -1.f / (2.f*sigma_c*sigma_c);
	RDom r(-rad, 2 * rad + 1, -rad, 2 * rad + 1);
	Expr total = sum(
		fast_exp((r.x*r.x + r.y*r.y)*ds)
		*fast_exp(
		(
			(input_float(x + r.x, y + r.y, 0) - input_float(x, y, 0))*(input_float(x + r.x, y + r.y, 0) - input_float(x, y, 0))
			+ (input_float(x + r.x, y + r.y, 1) - input_float(x, y, 1))*(input_float(x + r.x, y + r.y, 1) - input_float(x, y, 1))
			+ (input_float(x + r.x, y + r.y, 2) - input_float(x, y, 2))*(input_float(x + r.x, y + r.y, 2) - input_float(x, y, 2))
			)
			* dc)
	);

	Func blur("blur");
	blur(x, y, c) +=
		fast_exp((r.x*r.x + r.y*r.y)*ds)
		*fast_exp(
		(
			(input_float(x + r.x, y + r.y, 0) - input_float(x, y, 0))*(input_float(x + r.x, y + r.y, 0) - input_float(x, y, 0))
			+ (input_float(x + r.x, y + r.y, 1) - input_float(x, y, 1))*(input_float(x + r.x, y + r.y, 1) - input_float(x, y, 1))
			+ (input_float(x + r.x, y + r.y, 2) - input_float(x, y, 2))*(input_float(x + r.x, y + r.y, 2) - input_float(x, y, 2))
			)
			*dc)
		*input_float(x + r.x, y + r.y, c);

	Func output("output");
	output(x, y, c) = cast<uint8_t>(blur(x, y, c) / total);

	return output;
}

int main(int argc, char **argv)
{
	Buffer<uint8_t> input = load_image("rgb.png");
	int64 start, end;
	const int iteration = 5;

	for (int i = 0; i < iteration; i++)
	{
		start = cv::getTickCount();
		Func output1 = bilateral_filter_color(input, 3, 4.f, 30.f);
		Buffer<uint8_t> result1 = output1.realize(input.width(), input.height(), 3);
		end = cv::getTickCount();
		std::cout <<"with Func: "<< (end - start) * 1000 / cv::getTickFrequency() << "[ms]" << std::endl;
	}
	
	Func output2 = bilateral_filter_color(input, 3, 4.f, 30.f);
	for (int i = 0; i < iteration; i++)
	{
		start = cv::getTickCount();
		Buffer<uint8_t> result2 = output2.realize(input.width(), input.height(), 3);
		end = cv::getTickCount();
		std::cout <<"without Func: "<< (end - start) * 1000 / cv::getTickFrequency() << "[ms]" << std::endl;
	}

	for (int i = 0; i < iteration; i++)
	{
		start = cv::getTickCount();
		Func output3 = add(input, 30);
		Buffer<uint8_t> result3 = output3.realize(input.width(), input.height(), 3);
		end = cv::getTickCount();
		std::cout << "with Func: " << (end - start) * 1000 / cv::getTickFrequency() << "[ms]" << std::endl;
	}

	Func output4 = add(input, 30);
	for (int i = 0; i < iteration; i++)
	{
		start = cv::getTickCount();
		Buffer<uint8_t> result4 = output4.realize(input.width(), input.height(), 3);
		end = cv::getTickCount();
		std::cout << "without Func: " << (end - start) * 1000 / cv::getTickFrequency() << "[ms]" << std::endl;
	}
	
	cv::waitKey();
	return 0;
}

//utility function with OpenCV
void convertMat2Halide(cv::Mat& src, Buffer<uint8_t>& dest)
{
	const int ch = src.channels();
	if (ch == 1)
	{
		for (int j = 0; j < src.rows; j++)
		{
			for (int i = 0; i < src.cols; i++)
			{
				dest(i, j) = src.at<uchar>(j, i);
			}
		}
	}
	else if (ch == 3)
	{
		for (int j = 0; j < src.rows; j++)
		{
			for (int i = 0; i < src.cols; i++)
			{
				dest(i, j, 0) = src.at<uchar>(j, 3 * i);
				dest(i, j, 1) = src.at<uchar>(j, 3 * i + 1);
				dest(i, j, 2) = src.at<uchar>(j, 3 * i + 2);
			}
		}
	}
}

Buffer<uint8_t> load_image(cv::String name, int flags)
{
	cv::Mat a = cv::imread(name, flags);
	if (a.empty()) std::cout << name << " is empty" << std::endl;

	Buffer<uint8_t> ret(a.cols, a.rows, a.channels());
	convertMat2Halide(a, ret);

	return ret;
}
4
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?